A knowledge-driven approach to cluster validity assessment

被引:36
作者
Bolshakova, N [1 ]
Azuaje, F
Cunningham, P
机构
[1] Univ Dublin Trinity Coll, Dept Comp Sci, Dublin 2, Ireland
[2] Univ Ulster, Sch Comp & Math, Jordanstown BT37 0QB, North Ireland
基金
爱尔兰科学基金会;
关键词
D O I
10.1093/bioinformatics/bti317
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents an approach to assessing cluster validity based on similarity knowledge extracted from the Gene Ontology.
引用
收藏
页码:2546 / 2547
页数:2
相关论文
共 6 条
  • [1] [Anonymous], 1995, P 14 INT JOINT C ART
  • [2] Machaon CVE:: cluster validation for gene expression data
    Bolshakova, N
    Azuaje, F
    [J]. BIOINFORMATICS, 2003, 19 (18) : 2494 - 2495
  • [3] A genome-wide transcriptional analysis of the mitotic cell cycle
    Cho, RJ
    Campbell, MJ
    Winzeler, EA
    Steinmetz, L
    Conway, A
    Wodicka, L
    Wolfsberg, TG
    Gabrielian, AE
    Landsman, D
    Lockhart, DJ
    Davis, RW
    [J]. MOLECULAR CELL, 1998, 2 (01) : 65 - 73
  • [4] QUADRATIC ASSIGNMENT AS A GENERAL DATA-ANALYSIS STRATEGY
    HUBERT, L
    SCHULTZ, J
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1976, 29 (NOV) : 190 - 241
  • [5] Speer N, 2004, PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, P252
  • [6] Wang HY, 2004, PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, P25