Computational methods for the study of enzymic reaction mechanisms. II. An overlapping mechanically embedded method for hybrid semi-empirical-QM/MM calculations

被引:6
作者
Cummins, PL [1 ]
Gready, JE [1 ]
机构
[1] Australian Natl Univ, John Curtin Sch Med Res, Contribut Computat Proteom & Therapy Design Grp, Canberra, ACT 2601, Australia
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2003年 / 632卷
关键词
hydride ion; enzyme; mechanism; QM/MM methodology; multiple molecular dynamics;
D O I
10.1016/S0166-1280(03)00303-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semi-empirical quantum mechanics (QM) methods sometimes fail to describe molecular interactions adequately. The description of intermolecular forces, in particular, those associated with strong hydrogen bonding, poses a major problem for the study of protein systems using the semi-empirical AM1 or PM3 methods. Deficiencies in the description of these interactions at the semi-empirical QM level may lead to unphysical proton transfers and, in some instances, cleavage of covalent bonds, due to the large fluctuating forces experienced during molecular dynamics (MD) simulations with QM/MM potentials. In the present work, we describe a simple, computationally efficient and generally applicable method overlapping mechanically embedded (OME) method to overcome these potential problems that may arise with semi-empirical QM-derived forces in the MD. In the OME-QM/MM method, a region is defined in which both QM and MM Hamiltonian terms are computed. Which terms are actually used depends on whether the forces or free energy are being calculated. The method was applied to the calculation of the reaction free energy for the enzymic reduction of DHF by NADPH cofactor found to Escherichia coli dihydrofolate reductase (DHFR). The free energy change for this reduction, calculated using the configuration space sampled in a multiple molecular dynamics (MMD) simulation, was found to be in encouraging agreement, with the experimental results. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 38 条
[1]  
Amara P., 1998, ENCY COMPUTATIONAL C, V1, P431
[2]   A KINETIC-STUDY OF WILD-TYPE AND MUTANT DIHYDROFOLATE REDUCTASES FROM LACTOBACILLUS-CASEI [J].
ANDREWS, J ;
FIERKE, CA ;
BIRDSALL, B ;
OSTLER, G ;
FEENEY, J ;
ROBERTS, GCK ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1989, 28 (14) :5743-5750
[3]   NEW METHOD FOR PREDICTING BINDING-AFFINITY IN COMPUTER-AIDED DRUG DESIGN [J].
AQVIST, J ;
MEDINA, C ;
SAMUELSSON, JE .
PROTEIN ENGINEERING, 1994, 7 (03) :385-391
[4]   MULTIPLE MOLECULAR-DYNAMICS SIMULATIONS OF THE ANTICODON LOOP OF TRNA(ASP) IN AQUEOUS-SOLUTION WITH COUNTERIONS [J].
AUFFINGER, P ;
LOUISEMAY, S ;
WESTHOF, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (25) :6720-6726
[5]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]  
Cummins PL, 1998, J COMPUT CHEM, V19, P977, DOI 10.1002/(SICI)1096-987X(199806)19:8<977::AID-JCC15>3.0.CO
[8]  
2-4
[9]  
Cummins PL, 1997, J COMPUT CHEM, V18, P1496, DOI 10.1002/(SICI)1096-987X(199709)18:12<1496::AID-JCC7>3.0.CO
[10]  
2-E