Optimization of DIII-D advanced tokamak discharges with respect to the β limit -: art. no. 056126

被引:58
作者
Ferron, JR
Casper, TA
Doyle, EJ
Garofalo, AM
Gohil, P
Greenfield, CM
Hyatt, AW
Jayakumar, RJ
Kessel, C
Kim, JY
Luce, TC
Makowski, MA
Menard, J
Murakami, M
Petty, CC
Politzer, PA
Taylor, TS
Wade, MR
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[4] Columbia Univ, New York, NY 10027 USA
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[6] Korea Basic Sci Inst, Taejon 305333, South Korea
[7] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
D O I
10.1063/1.1871247
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results are presented from comparisons of modeling and experiment in studies to assess the best choices of safety factor q profile, pressure profile, and discharge shape for high beta, steady-state, noninductive advanced tokamak operation in the DIII-D device [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. These studies are motivated by the need for high q(min)beta(N) to maximize the self-driven bootstrap current while maintaining high toroidal beta to increase fusion gain. Modeling shows that increases in the normalized beta beta(N) stable to ideal, low toroidal mode number (n=1,2), instabilities can be obtained through broadening of the pressure profile and use of a symmetric double-null divertor shape. Experimental results are in agreement with this prediction. The general trend is for q(min)beta(N) to increase with the minimum q value (q(min)) although beta(N) decreases as q(min) increases. By broadening the pressure profile, beta(N)approximate to 4 is obtained with q(min)approximate to 2. Modeling of equilibria with near 100% bootstrap current indicates that operation with beta(N)approximate to 5 should be possible with a sufficiently broad pressure profile. (c) 2005 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 48 条
[1]   GATO - AN MHD STABILITY CODE FOR AXISYMMETRIC PLASMAS WITH INTERNAL SEPARATRICES [J].
BERNARD, LC ;
HELTON, FJ ;
MOORE, RW .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) :377-380
[2]   Magnetohydrodynamic beta limits for tokamaks with negative central shear [J].
Bondeson, A ;
Benda, M ;
Persson, M ;
Chu, MS .
NUCLEAR FUSION, 1997, 37 (10) :1419-1429
[3]   MHD beta limits for advanced scenarios on JET [J].
Bondeson, A ;
Liu, DH ;
Söldner, FX ;
Persson, M ;
Baranov, YF ;
Huysmans, GTA .
NUCLEAR FUSION, 1999, 39 (11) :1523-1533
[4]   Negative magnetic shear modes of operation in the Alcator C-Mod tokamak near the beta limit [J].
Bonoli, PT ;
Porkolab, M ;
Ramos, JJ ;
Nevins, W ;
Kessel, C .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (02) :223-236
[5]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061
[6]   A mechanism for tearing onset near ideal stability boundaries [J].
Brennan, DP ;
La Haye, RJ ;
Turnbull, AD ;
Chu, MS ;
Jensen, TH ;
Lao, LL ;
Luce, TC ;
Politzer, PA ;
Strait, EJ ;
Kruger, SE ;
Schnack, DD .
PHYSICS OF PLASMAS, 2003, 10 (05) :1643-1652
[7]  
Burrell KH, 2003, NUCL FUSION, V43, P1555, DOI 10.1088/0029-5515/43/12/003
[9]   Resistive interchange modes in negative central shear tokamaks with peaked pressure profiles [J].
Chu, MS ;
Greene, JM ;
Lao, LL ;
Miller, RL ;
Bondeson, A ;
Sauter, O ;
Rice, BW ;
Strait, EJ ;
Taylor, TS ;
Turnbull, AD .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2710-2713
[10]   AN ITERATIVE METRIC METHOD FOR SOLVING THE INVERSE TOKAMAK EQUILIBRIUM PROBLEM [J].
DELUCIA, J ;
JARDIN, SC ;
TODD, AMM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (02) :183-204