Nonlinear dynamics of the Frenkel-Kontorova model

被引:563
作者
Braun, OM
Kivshar, YS [1 ]
机构
[1] Australian Natl Univ, Ctr Opt Sci, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[2] Natl Acad Sci Ukraine, Inst Phys, UA-252022 Kiev, Ukraine
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 1998年 / 306卷 / 1-2期
关键词
non-linear dynamics; kinks; Frenkel-Kontorova model; discrete breathers; nonlinear impurity modes; Peierls-Nabarro potential; sine-Gordon equation; kink diffusion; disorder;
D O I
10.1016/S0370-1573(98)00029-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An overview of the dynamics of one of the fundamental models of low-dimensional nonlinear physics, the Frenkel-Kontorova (FK) model, is presented. In its simple.;form, the FK model describes the motion of a chain of interacting particles ("atoms") subjected to an external on-site periodic potential. Physically important generalizations of the FK model are discussed including nonsinusoidal on-site potentials and anharmonic (e.g., nonconvex, Kac-Baker, power-law) interactions between the particles. The results are summarized for the one-dimensional dynamics of kinks - topological excitations, including the kink diffusion and effects of disorder, and also for nonlinear localized modes, discrete breathers. A special attention is paid to the numerous applications of the FK model in the problems of low-dimensional solid state physics. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 108
页数:108
相关论文
共 366 条
[1]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[2]   MOLECULAR-DYNAMICS SIMULATIONS OF THE INCOMMENSURATE PHASE OF KRYPTON ON GRAPHITE USING MORE THAN 100000 ATOMS [J].
ABRAHAM, FF ;
RUDGE, WE ;
AUERBACH, DJ ;
KOCH, SW .
PHYSICAL REVIEW LETTERS, 1984, 52 (06) :445-448
[3]   Dynamics of topological solitons in models with nonlocal interactions [J].
Alfimov, G. L. ;
Eleonskii, V. M. ;
Kulagin, N. E. ;
Mitskevich, N. V. .
CHAOS, 1993, 3 (03) :405-414
[4]  
ALFIMOV GL, 1996, NONLINEAR KLEIN GORD, P257
[5]   DYNAMIC PROPERTIES OF THE RADIATION COMPONENT IN THE SINE-GORDON EQUATION [J].
ALONSO, LM .
PHYSICS LETTERS A, 1986, 114 (06) :285-288
[6]  
ALSHITS VI, 1970, FIZ TVERD TELA+, V11, P1947
[7]  
ALSHITZ VI, 1971, SOV PHYS JETP-USSR, V33, P1240
[8]   FRACTAL STRUCTURE IN THE SCALAR LAMBDA(PHI-2-1)2 THEORY [J].
ANNINOS, P ;
OLIVEIRA, S ;
MATZNER, RA .
PHYSICAL REVIEW D, 1991, 44 (04) :1147-1160
[9]  
[Anonymous], 1980, SYNERGETICS
[10]  
[Anonymous], ZH EKSP TEOR FIZ