Apo-Hsp90 coexists in two open conformational states in solution

被引:56
作者
Bron, Patrick [1 ]
Giudice, Emmanuel [1 ]
Rolland, Jean-Paul [1 ]
Buey, Ruben M. [2 ]
Barbier, Pascale [3 ]
Diaz, J. Fernando [2 ]
Peyrot, Vincent [3 ]
Thomas, Daniel [1 ]
Garnier, Cyrille [1 ]
机构
[1] Univ Rennes 1, CNRS, Equipe SDM, UMR 6026, F-35042 Rennes, France
[2] CSIC, Ctr Invest Biol, E-28040 Madrid, Spain
[3] Univ Aix Marseille 2, Fac Pharm, INSERM, U911,CRO2, F-13385 Marseille 5, France
关键词
chaperone; cryo-electron microscopy (cryo-EM); intrinsic flexibility; 90 kDa heat-shock protein (Hsp90); small-angle X-ray scattering (SAXS); structure;
D O I
10.1042/BC20070149
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background information. Hsp90 (90 kDa heat-shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide-binding-dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue). Results and discussion. Here, we present the first nucleotide-free structures of the entire eukaryotic Hsp90 (apo-Hsp90) obtained by small-angle X-ray scattering and single-particle cryo-EM (cryo-electron microscopy). We show that, in solution, apo-Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo-EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo-forms require large movements of the NTD (N-terminal domain) and MD (middle domain) around two flexible hinge regions. Conclusions. The present study shows, for the first time, the structure of the entire eukaryotic apo-Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 35 条
[1]   Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex [J].
Ali, MMU ;
Roe, SM ;
Vaughan, CK ;
Meyer, P ;
Panaretou, B ;
Piper, PW ;
Prodromou, C ;
Pearl, LH .
NATURE, 2006, 440 (7087) :1013-1017
[2]  
ANDREU JM, 1994, J BIOL CHEM, V269, P31785
[3]   Hsp90 & Co. - a holding for folding [J].
Buchner, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (04) :136-141
[4]   Reconstruction of protein form with X-ray solution scattering and a genetic algorithm [J].
Chacón, P ;
Díaz, JF ;
Morán, F ;
Andreu, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (05) :1289-1302
[5]   The 90-kDa molecular chaperone family:: Structure, function, and clinical applications.: A comprehensive review [J].
Csermely, P ;
Schnaider, T ;
Soti, C ;
Prohászka, Z ;
Nardai, G .
PHARMACOLOGY & THERAPEUTICS, 1998, 79 (02) :129-168
[6]  
CSERMELY P, 1993, J BIOL CHEM, V268, P1901
[7]   Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: Time-resolved X-ray scattering [J].
Diaz, JF ;
Andreu, JM ;
Diakun, G ;
TownsAndrews, E ;
Bordas, J .
BIOPHYSICAL JOURNAL, 1996, 70 (05) :2408-2420
[8]   Heat-shock protein 90 (hsp90) binds in vitro to tubulin dimer and inhibits microtubule formation [J].
Garnier, C ;
Barbier, P ;
Gilli, R ;
Lopez, C ;
Peyrot, V ;
Briand, C .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 250 (02) :414-419
[9]   The two-stage process of the heat shock protein 90 thermal denaturation: Effect of calcium and magnesium [J].
Garnier, C ;
Protasevich, I ;
Gilli, R ;
Tsvetkov, P ;
Lobachov, V ;
Peyrot, V ;
Briand, C ;
Makarov, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (01) :197-201
[10]   Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: Effects of divalent cations [J].
Garnier, C ;
Barbier, P ;
Devred, F ;
Rivas, G ;
Peyrot, V .
BIOCHEMISTRY, 2002, 41 (39) :11770-11778