High dimensional integration of smooth functions over cubes

被引:238
作者
Novak, E
Ritter, K
机构
[1] Mathematisches Institut, Univ. Erlangen-Nürnberg, D-91054 Erlangen
关键词
D O I
10.1007/s002110050231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new algorithm for the numerical integration of functions that are defined on a d-dimensional cube. It is based on the Clenshaw-Curtis rule for d = 1 and on Smolyak's construction. This way we make the best use of the smoothness properties of any (nonperiodic) function. We prove error bounds showing that our algorithm is almost optimal (up to logarithmic factors) for different classes of functions with bounded mixed derivative. Numerical results show that the new method is very competitive, in particular for smooth integrands and d greater than or equal to 8.
引用
收藏
页码:79 / 97
页数:19
相关论文
共 41 条
[1]  
[Anonymous], 1987, A Package for Testing Multiple Integration Subroutines, DOI DOI 10.1007/978-94-009-3889-2_33
[2]  
[Anonymous], 1960, SOVIET MATH DOKL
[3]  
BASZENSKI G, 1993, INT S NUM M, V112, P1
[4]  
BASZENSKI G, 1992, INT S NUM M, V105, P1
[5]  
Bonk T., 1994, Adaptive Methods-Algorithms, Theory and Applications, P54
[6]  
BRASS H, 1993, INT S NUM M, V112, P39
[7]  
BRASS H, 1992, NATO ADV SCI I C-MAT, V357, P147
[8]  
Brass H., 1977, Quadraturverfahren
[9]  
BUNGARTZ H, 1992, THESIS TU MUNCHEN
[10]   D-VARIATE BOOLEAN INTERPOLATION [J].
DELVOS, FJ .
JOURNAL OF APPROXIMATION THEORY, 1982, 34 (02) :99-114