Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy

被引:415
作者
Tian, Zhong-Qun [1 ]
Ren, Bin [1 ]
Li, Jian-Feng [1 ]
Yang, Zhi-Lin [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China
关键词
D O I
10.1039/b616986d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(110) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.
引用
收藏
页码:3514 / 3534
页数:21
相关论文
共 190 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Locally enhanced Raman spectroscopy with an atomic force microscope [J].
Anderson, MS .
APPLIED PHYSICS LETTERS, 2000, 76 (21) :3130-3132
[3]   Subsurface Raman imaging with nanoscale resolution [J].
Anderson, N ;
Anger, P ;
Hartschuh, A ;
Novotny, L .
NANO LETTERS, 2006, 6 (04) :744-749
[4]   Nanoscale vibrational analysis of single-walled carbon nanotubes [J].
Anderson, N ;
Hartschuh, A ;
Cronin, S ;
Novotny, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2533-2537
[5]   USE OF A PERFECTLY CONDUCTING SPHERE TO EXCITE THE PLASMON OF A FLAT SURFACE .1. CALCULATION OF THE LOCAL FIELD WITH APPLICATIONS TO SURFACE-ENHANCED SPECTROSCOPY [J].
ARAVIND, PK ;
METIU, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (26) :5076-5084
[6]   THE INTERACTION BETWEEN ELECTROMAGNETIC RESONANCES AND ITS ROLE IN SPECTROSCOPIC STUDIES OF MOLECULES ADSORBED ON COLLOIDAL PARTICLES OR METAL SPHERES [J].
ARAVIND, PK ;
NITZAN, A ;
METIU, H .
SURFACE SCIENCE, 1981, 110 (01) :189-204
[7]  
Aroca R., 2006, Surface-Enhanced Vibrational Spectroscopy
[8]   Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays [J].
Baldelli, S ;
Eppler, AS ;
Anderson, E ;
Shen, YR ;
Somorjai, GA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (13) :5432-5438
[9]  
BAO F, UNPUB
[10]   Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering measurement [J].
Bao, LL ;
Mahurin, SM ;
Dai, S .
ANALYTICAL CHEMISTRY, 2004, 76 (15) :4531-4536