Lagrangian construction of the (gln,glm)-duality

被引:7
作者
Wang, WQ [1 ]
机构
[1] Max Planck Inst Math, D-5300 Bonn, Germany
关键词
D O I
10.1142/S0219199701000329
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a geometric realization of the symmetric algebra of the tenser space C-n circle times C-m together with the action of the dual pair (gl(n), gl(m)) in terms of lagrangian cycles in the cotangent bundles of certain varieties. We establish geometrically the equivalence between the (gl(n), gl(m))-duality and Schur duality. We establish the connection between Springer's construction of (representations of) Weyl groups and Ginzburg's construction of (representations of) Lie algebras of type A.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 8 条
[1]  
[Anonymous], NEDERL AKAD WETENSCH
[2]   A GEOMETRIC SETTING FOR THE QUANTUM DEFORMATION OF GLN [J].
BEILINSON, AA ;
LUSZTIG, G ;
MACPHERSON, R .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) :655-677
[3]  
Chriss N., 1997, Representation Theory and Complex Geometry
[4]  
GINZBURG V, 1991, CR ACAD SCI I-MATH, V312, P907
[5]  
Ginzburg V., 1994, Contemp. Math., V175, P101
[6]  
Grojnowski I., 1992, KAZHDANLUSZTIG THEOR, V139, P167
[7]  
Howe R., 1995, ISRAEL MATH C P, V8, P1
[8]  
Humphreys J. E., 1995, MATH SURVEYS MONOGRA, V43