Development and experimental validation of a PEM fuel cell dynamic model

被引:185
作者
del Real, Alejandro J. [1 ]
Arce, Alicia [1 ]
Bordons, Carlos [1 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Seville 41092, Spain
关键词
PEMFC; modeling; dynamic; temperature; flooding; startup;
D O I
10.1016/j.jpowsour.2007.04.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A dynamic model of a 1.2 kW polymer electrolyte membrane (PEM) fuel cell (FC) is developed and validated through a series of experiments. This dynamic model is mostly oriented towards control and operation optimization and can be a useful tool for the design of FC-based systems. In the methodology proposed, theoretical equations are combined with experimental relations, resulting in a semi-empirical formulation. The model assumptions are discussed extensively as the equations are presented. This model contributes to the description of the following areas: fluid dynamics in the gas flow fields and gas diffusion layers (oxygen, hydrogen, liquid water and vapor); thermal dynamics and temperature effects; a novel algorithm to calculate an empirical polarization curve. As a result, this model can predict both steady and transient states (such as flooding and anode purges) due to variable loads, as well as the system start-up. Based on this model, a simulator software package has been developed, which is available upon request. The model parameters have been adjusted specifically for a 1.2 kW Ballard stack, which can be considered a benchmark as it is widely used by research groups worldwide. Finally, the simulated results are compared to experimental data from the Ballard stack, demonstrating the accuracy of the proposed model methodology. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:310 / 324
页数:15
相关论文
共 38 条
[1]   Hydrogen from renewable resources - the hundred year commitment [J].
Adamson, KA .
ENERGY POLICY, 2004, 32 (10) :1231-1242
[2]   Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations [J].
Al-Baghdadi, MARS .
RENEWABLE ENERGY, 2005, 30 (10) :1587-1599
[3]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[4]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[5]  
ARCE A, 2005, THESIS U SEVILLE
[6]   Water management in PEM fuel cells [J].
Berg, P ;
Promislow, K ;
St Pierre, J ;
Stumper, J ;
Wetton, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :A341-A353
[7]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[8]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[9]  
BORDONS C, 2006, P 2006 AM CONTR C
[10]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772