Characterization of the 16S rRNA- and membrane-binding domains of Streptococcus pneumoniae Era GTPase -: Structural and functional implications

被引:22
作者
Hang, JQ
Zhao, GS
机构
[1] Eli Lilly & Co, Lilly Corp Ctr, Lilly Res Labs, Canc Res, Indianapolis, IN 46285 USA
[2] Roche Palo Alto LLC, Palo Alto, CA USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2003年 / 270卷 / 20期
关键词
GTPase activity; 16S rRNA-binding activity; membrane association; KH domain; Streptococcus pneumoniae;
D O I
10.1046/j.1432-1033.2003.03813.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Era is a highly conserved GTPase essential for bacterial growth. The N-terminal part of Era contains a conserved GTPase domain, whereas the C-terminal part of the protein contains an RNA- and membrane-binding domain, the KH domain. To investigate whether the binding of Era to 16S rRNA and membrane requires its GTPase activity and whether the GTPase domain is essential for these activities, the N- and C-terminal parts of the Streptococcus pneumoniae Era-Era-N (amino acids 1-185) and Era-C (amino acids 141-299), respectively - were expressed and purified. Era-C, which had completely lost GTPase activity, bound to the cytoplasmic membrane and 16S rRNA. In contrast, Era-N, which retained GTPase activity, failed to bind to RNA or membrane. These results therefore indicate that the binding of Era to RNA and membrane does not require the GTPase activity of the protein and that the RNA-binding domain is an independent, functional domain. The physiological effects of the overexpression of Era-C were assessed. The Escherichia coli cells overexpressing Era and Era-N exhibited the same growth rate as wildtype E. coli cells. In contrast, the E. coli cells overexpressing Era-C exhibited a reduced growth rate, indicating that the overexpression of Era-C inhibits cell growth. Furthermore, overexpression of era-N and era-C resulted in morphological changes. Finally, purified Era and Era-C were able to bind to poly(U) RNA, and the binding of Era to poly(U) RNA was significantly inhibited by liposome, as the amount of Era bound to the RNA decreased proportionally with the increase of liposome in the assay. Therefore, this study provides the first biochemical evidence that both binding sites are overlapping. Together, these results indicate that the RNA- and membrane-binding domain of Era is a separate, functional entity and does not require the GTPase activity or the GTPase domain of the protein for activity.
引用
收藏
页码:4164 / 4172
页数:9
相关论文
共 34 条
[1]   A GTP-BINDING PROTEIN OF ESCHERICHIA-COLI HAS HOMOLOGY TO YEAST RAS PROTEINS [J].
AHNN, J ;
MARCH, PE ;
TAKIFF, HE ;
INOUYE, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (23) :8849-8853
[2]   Mammalian homologue of E-coli ras-like GTPase (ERA) is a possible apoptosis regulator with RNA binding activity [J].
Akiyama, T ;
Gohda, J ;
Shibata, S ;
Nomura, Y ;
Azuma, S ;
Ohmori, Y ;
Sugano, S ;
Arai, H ;
Yamamoto, T ;
Inoue, J .
GENES TO CELLS, 2001, 6 (11) :987-1001
[3]   Stress-induced membrane association of the Streptococcus mutans GTP-binding protein, an essential G protein, and investigation of its physiological role by utilizing an antisense RNA strategy [J].
Baev, D ;
England, R ;
Kuramitsu, HK .
INFECTION AND IMMUNITY, 1999, 67 (09) :4510-4516
[4]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[5]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[6]   Cell cycle arrest in era GTPase mutants:: a potential growth rate-regulated checkpoint in Escherichia coli [J].
Britton, RA ;
Powell, BS ;
Dasgupta, S ;
Sun, Q ;
Margolin, W ;
Lupski, JR ;
Court, DL .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :739-750
[7]   Characterization of mutations affecting the Escherichia coli essential GTPase era that suppress two temperature-sensitive dnaG alleles [J].
Britton, RA ;
Powell, BS ;
Court, DL ;
Lupski, JR .
JOURNAL OF BACTERIOLOGY, 1997, 179 (14) :4575-4582
[8]   Isolation and preliminary characterization of the human and mouse homologues of the bacterial cell cycle gene era [J].
Britton, RA ;
Chen, SM ;
Wallis, D ;
Koeuth, T ;
Powell, BS ;
Shaffer, LG ;
Largaespada, D ;
Jenkins, NA ;
Copeland, NG ;
Court, DL ;
Lupski, JR .
GENOMICS, 2000, 67 (01) :78-82
[9]   Crystal structure of ERA: A GTPase-dependent cell cycle regulator containing an RNA binding motif [J].
Chen, X ;
Court, DL ;
Ji, XH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8396-8401
[10]   WHOLE-GENOME RANDOM SEQUENCING AND ASSEMBLY OF HAEMOPHILUS-INFLUENZAE RD [J].
FLEISCHMANN, RD ;
ADAMS, MD ;
WHITE, O ;
CLAYTON, RA ;
KIRKNESS, EF ;
KERLAVAGE, AR ;
BULT, CJ ;
TOMB, JF ;
DOUGHERTY, BA ;
MERRICK, JM ;
MCKENNEY, K ;
SUTTON, G ;
FITZHUGH, W ;
FIELDS, C ;
GOCAYNE, JD ;
SCOTT, J ;
SHIRLEY, R ;
LIU, LI ;
GLODEK, A ;
KELLEY, JM ;
WEIDMAN, JF ;
PHILLIPS, CA ;
SPRIGGS, T ;
HEDBLOM, E ;
COTTON, MD ;
UTTERBACK, TR ;
HANNA, MC ;
NGUYEN, DT ;
SAUDEK, DM ;
BRANDON, RC ;
FINE, LD ;
FRITCHMAN, JL ;
FUHRMANN, JL ;
GEOGHAGEN, NSM ;
GNEHM, CL ;
MCDONALD, LA ;
SMALL, KV ;
FRASER, CM ;
SMITH, HO ;
VENTER, JC .
SCIENCE, 1995, 269 (5223) :496-512