Protection against hypoxia-reoxygenation in the absence of poly (ADP-ribose) synthetase in isolated working hearts

被引:48
作者
Grupp, IL
Jackson, TM
Hake, P
Grupp, G
Szabó, C
机构
[1] Childrens Hosp, Med Ctr, Div Crit Care, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, Cincinnati, OH 45267 USA
关键词
cardiac myocytes; peroxynitrite; nitric oxide; superoxide; reperfusion;
D O I
10.1006/jmcc.1998.0864
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Peroxynitrite and hydroxyl radical are reactive oxidants produced during myocardial reperfusion injury. They have been shown to induce dysfunction in cardiac myocytes, in part, via the activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS). These oxidants can trigger DNA single strand breakage, which triggers PARS activation, resulting in cellular NAD(+) and ATP depletion and cytotoxicity. Recent work has demonstrated that hypoxia-reoxygenation of cardiac myocytes in vitro also causes peroxynitrite formation, PARS activation and cytotoxicity. In the present study. using hearts from genetically engineered mice lacking PARS, we have investigated whether the absence of PARS alters the functional response to hypoxia reoxygenation. Isolated work-performing mouse hearts were stabilized under the same loading condition (cardiac minute work of 250 mmHg x ml/min, an afterload of 50 mmHg aortic pressure and similar venous return of 5 ml/min, resulting in the same preload). After 30 min equilibration the hearts were subjected to 30 min hypoxia followed by 30 min of reoxygenation. At the end of the reoxygenation, in hearts from wild-type animals, there was a significant suppression in the rate of intraventricular pressure development (+dP/dt) from 3523 to 2907 mmHg. There was also a significant suppression in the rate of relaxation (- dP/dt) in the wild-type hearts from 3123 to 2168 mmHg, The time to peak pressure (TPP) increased from 0.45 to 0.59 ms/mmHg and the half-time of relaxation (RT1/2) increased from 0.59 to 0.74 ms/mmHg, In contrast, in the hearts from the PARS knockout animals, no significant suppression of +dP/dt (from 3654 to 3419 mmHg), and no significant increase in the TPP (from 0.462 to 0.448 ms/mmHg) were found, and the decrease in - dP/dt was partially ameliorated (from 3399 to 2687 mmHg) as well as the half-time of relaxation (from 0.507 to 0.55 ms/mmHg) when compared to the response to the wild-type hearts. The current data demonstrate that the reoxygenation induced suppression of the myocardial contractility is dependent on the functional integrity of PARS. (C) 1999 Academic Press.
引用
收藏
页码:297 / 303
页数:7
相关论文
共 40 条
  • [1] ABDELFATTAH AS, 1990, CIRCULATION, V82, P341
  • [2] DIFFERENTIAL-EFFECTS OF VARIOUS INOTROPIC AGENTS ON THE INTRACELLULAR NADH REDOX LEVEL IN THE INVIVO DOG HEART
    ACAD, BA
    GUGGENHEIMER, E
    SONN, J
    KEDEM, J
    [J]. JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 1983, 5 (02) : 284 - 290
  • [3] BERGER NA, 1991, AM J RESP CELL MOL, V4, P1
  • [4] Bromme HJ, 1996, MOL CELL BIOCHEM, V164, P261
  • [5] CHU G, 1996, CIRC RES, V78, P1064
  • [6] Dhar, 1996, J Cardiovasc Pharmacol Ther, V1, P235
  • [7] DOHERTY JC, 1998, NAUNYNSCHMIEDEBER S1, V358, pR626
  • [8] Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia
    Eliasson, MJL
    Sampei, K
    Mandir, AS
    Hurn, PD
    Traystman, RJ
    Bao, J
    Pieper, A
    Wang, ZQ
    Dawson, TM
    Snyder, SH
    Dawson, VL
    [J]. NATURE MEDICINE, 1997, 3 (10) : 1089 - 1095
  • [9] Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase
    Endres, M
    Wang, ZQ
    Namura, S
    Waeber, C
    Moskowitz, MA
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (11) : 1143 - 1151
  • [10] Protection by inhibition of poly (ADP-ribose) synthetase against oxidant injury in cardiac myoblasts in vitro
    Gilad, E
    Zingarelli, B
    Salzman, AL
    Szabo, C
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (09) : 2585 - 2597