Optimization of mesoporous carbon structures for lithium-sulfur battery applications

被引:419
作者
Li, Xiaolin [1 ]
Cao, Yuliang [1 ,2 ]
Qi, Wen [1 ,3 ]
Saraf, Laxmikant V. [1 ]
Xiao, Jie [1 ]
Nie, Zimin [1 ]
Mietek, Jaroniec [4 ]
Zhang, Ji-Guang [1 ]
Schwenzer, Birgit [1 ]
Liu, Jun [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99354 USA
[2] Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[4] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
关键词
COMPOSITE CATHODE MATERIALS; IONIC LIQUID ELECTROLYTE; GLYCOL) DIMETHYL ETHER; ELECTROCHEMICAL PROPERTIES; RECHARGEABLE BATTERIES; CYCLE PROPERTY; PERFORMANCE; IMPROVEMENT; NANOTUBES; BINDER;
D O I
10.1039/c1jm12979a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mesoporous carbon (MC) with tunable pore sizes (22 nm, 12 nm, 7 nm, and 3 nm) and pore volumes (from 1.3 to 4.8 cm(3) g(-1)) containing sulfur in the pores was studied as a mesoporous carbon-sulfur (MCS) composite electrode for lithium-sulfur (Li-S) batteries. Systematic investigation of these MCS composites reveals that MC with a larger pore volume can hold a higher maximum sulfur loading, but overall the battery performance is very similar for different MCS composites at full sulfur-filling conditions (i.e., the condition at which the sulfur loading approaches the maximum limit set by the pore volume of the individual MC and, therefore, the pores of each MC are fully filled by sulfur). For the same MC, partial sulfur-filling (i.e., the condition at which the sulfur loading is lower than the maximum limit and, therefore, the pores are only partially filled with sulfur) leads to an improved initial discharge capacity and cycle stability, probably because of improved electrical and ionic transport during electrochemical reactions. Based on this understanding, an MCS composite electrode using MC with a large pore volume, partial sulfur filling, and a novel surface modification was designed for Li-S batteries. An initial capacity of similar to 1390 mA h g(-1) (based on sulfur) and a capacity retention of similar to 840 mA h g(-1) over 100 cycles at a 0.1 C rate were obtained using MC (22 nm, 4.8 cm(3) g(-1)) with 50 wt% sulfur loading and a commercially available Clevios P (poly(3,4-ethylenedioxythiophene)poly (styrenesulfonate) (PEDT/PSS)) coating.
引用
收藏
页码:16603 / 16610
页数:8
相关论文
共 35 条
  • [1] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [2] Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries
    Cao, Yuliang
    Li, Xiaolin
    Aksay, Ilhan A.
    Lemmon, John
    Nie, Zimin
    Yang, Zhenguo
    Liu, Jun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) : 7660 - 7665
  • [3] Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery
    Chang, DR
    Lee, SH
    Kim, SW
    Kim, HT
    [J]. JOURNAL OF POWER SOURCES, 2002, 112 (02) : 452 - 460
  • [4] CHEN SR, ELECTROCHIM IN PRESS
  • [5] Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge
    Cheon, SE
    Ko, KS
    Cho, JH
    Kim, SW
    Chin, EY
    Kim, HT
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) : A796 - A799
  • [6] Rechargeable lithium sulfur battery - II. Rate capability and cycle characteristics
    Cheon, SE
    Ko, KS
    Cho, JH
    Kim, SW
    Chin, EY
    Kim, HT
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) : A800 - A805
  • [7] Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries
    Cheon, SE
    Cho, JH
    Ko, KS
    Kwon, CW
    Chang, DR
    Kim, HT
    Kim, SW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (11) : A1437 - A1441
  • [8] Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive
    Choi, Jae-Won
    Cheruvally, Gouri
    Kim, Dul-Sun
    Ahn, Jou-Hyeon
    Kim, Ki-Won
    Ahn, Hyo-Jun
    [J]. JOURNAL OF POWER SOURCES, 2008, 183 (01) : 441 - 445
  • [9] Improvement of cycle property of sulfur electrode for lithium/sulfur battery
    Choi, Young-Jin
    Kim, Ki-Won
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 449 (1-2) : 313 - 316
  • [10] Effect of multiwalled carbon nanotubes on electrochemical properties of lithium sulfur rechargeable batteries
    Han, SC
    Song, MS
    Lee, H
    Kim, HS
    Ahn, HJ
    Lee, JY
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) : A889 - A893