Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic

被引:71
作者
Ventriglia, Tiziana [1 ]
Kuhn, Misty L. [2 ]
Ruiz, M. Teresa [1 ]
Ribeiro-Pedro, Marina [1 ]
Valverde, Federico [1 ]
Ballicora, Miguel A. [2 ]
Preiss, Jack [3 ]
Romero, Jose M. [1 ]
机构
[1] Univ Seville, CSIC, Ctr Invest Cient Isla Cartuja, Inst Bioquim Vegetal & Fotosintesis, Seville 41092, Spain
[2] Loyola Univ, Dept Chem, Chicago, IL 60626 USA
[3] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
D O I
10.1104/pp.108.122846
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 54 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]  
[Anonymous], 1987, Plant Molecular Biology Reporter
[3]   Resurrecting the ancestral enzymatic role of a modulatory subunit [J].
Ballicora, MA ;
Dubay, JR ;
Devillers, CH ;
Preiss, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) :10189-10195
[4]   ADP-Glucose pyrophosphorylase from potato tubers. Site-directed mutagenesis studies of the regulatory sites [J].
Ballicora, MA ;
Fu, YB ;
Nesbitt, NM ;
Preiss, J .
PLANT PHYSIOLOGY, 1998, 118 (01) :265-274
[5]   ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis [J].
Ballicora, MA ;
Iglesias, AA ;
Preiss, J .
PHOTOSYNTHESIS RESEARCH, 2004, 79 (01) :1-24
[6]   ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis [J].
Ballicora, MA ;
Iglesias, AA ;
Preiss, J .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (02) :213-+
[7]   The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA) [J].
Blankenfeldt, W ;
Asuncion, M ;
Lam, JS ;
Naismith, JH .
EMBO JOURNAL, 2000, 19 (24) :6652-6663
[8]   Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid [J].
Burger, BT ;
Cross, JM ;
Shaw, JR ;
Caren, JR ;
Greene, TW ;
Okita, TW ;
Hannah, LC .
PLANTA, 2003, 217 (03) :449-456
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes [J].
Crevillén, P ;
Ventriglia, T ;
Pinto, F ;
Orea, A ;
Mérida, A ;
Romero, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :8143-8149