Nonmonotone adaptive trust-region method for unconstrained optimization problems

被引:54
作者
Fu, JH [1 ]
Sun, WY [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
trust region method; unconstrained optimization; global convergence; superlinear convergence; nonmonotone methods;
D O I
10.1016/j.amc.2004.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an adaptive trust region method with nonmonotone technique for unconstrained optimization problems is presented and analyzed. The global and local convergence results of the algorithm are established. Numerical results show that the new method is efficient. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:489 / 504
页数:16
相关论文
共 23 条
[1]  
CAI XJ, 2003, NATURAL SCI EDITION, V26, P16
[2]   NONMONOTONIC TRUST REGION ALGORITHM [J].
DENG, NY ;
XIAO, Y ;
ZHOU, FJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :259-285
[3]   2 NEW UNCONSTRAINED OPTIMIZATION ALGORITHMS WHICH USE FUNCTION AND GRADIENT VALUES [J].
DENNIS, JE ;
MEI, HHW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 28 (04) :453-482
[4]   A TRUNCATED NEWTON METHOD WITH NONMONOTONE LINE SEARCH FOR UNCONSTRAINED OPTIMIZATION [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (03) :401-419
[5]   A CLASS OF NONMONOTONE STABILIZATION METHODS IN UNCONSTRAINED OPTIMIZATION [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :779-805
[6]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716
[7]  
More J.J., 1983, MATH PROGRAMMING STA, P258
[8]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936
[9]   A NEW MODIFIED CHOLESKY FACTORIZATION [J].
SCHNABEL, RB ;
ESKOW, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (06) :1136-1158