Tutorial on photoacoustic microscopy and computed tomography

被引:477
作者
Wang, Lihong V. [1 ]
机构
[1] Washington Univ, Dept Biomed Engn, Opt Imaging Lab, St Louis, MO 63130 USA
基金
美国国家卫生研究院;
关键词
microwave-induced acoustic imaging; optical imaging; optoacoustic imaging; photoacoustic imaging (PAI); photoacoustic microscopy (PAM); photoacoustic tomography; thermoacoustic tomography;
D O I
10.1109/JSTQE.2007.913398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The field of photoacoustic tomography has experienced considerable growth in the past few years. Although several commercially available pure optical imaging modalities, including confocal microscopy, two-photon microscopy, and optical coherence tomography, have been highly successful, none of these technologies can provide penetration beyond similar to 1 mm into scattering biological tissues, because they are based on ballistic and quasi-ballistic photons. Heretofore, there has been a void in high-resolution optical imaging beyond this penetration limit. Photoacoustic tomography, which combines high ultrasonic resolution and strong optical contrast in a single modality, has broken through this limitation and filled this void. In this paper, the fundamentals of photoacoustics are first introduced. Then, scanning photoacoustic microscopy and reconstruction-based photoacoustic tomography (or photoacoustic computed tomography) are covered.
引用
收藏
页码:171 / 179
页数:9
相关论文
共 43 条
[1]   Detection of ultrawide-band ultrasound pulses in optoacoustic tomography [J].
Andreev, VG ;
Karabutov, AA ;
Oraevsky, AA .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2003, 50 (10) :1383-1390
[2]  
ANSI Laser Institute of America, 2000, Z13612000 ANSI LAS I
[3]  
Bell A.G., 1880, J. Soc. Telegr. Eng., V20, P305, DOI [10.2475/ajs.s3-20.118.305, DOI 10.2475/AJS.S3-20.118.305]
[4]  
BRIGGS GAD, 2000, ACOUSTIC MICROSCOPY
[5]   Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography [J].
Copland, JA ;
Eghtedari, M ;
Popov, VL ;
Kotov, N ;
Mamedova, N ;
Motamedi, M ;
Oraevsky, AA .
MOLECULAR IMAGING AND BIOLOGY, 2004, 6 (05) :341-349
[6]   Fast calculation of pulsed photoacoustic fields in fluids using k-space methods [J].
Cox, BT ;
Beard, PC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2005, 117 (06) :3616-3627
[7]   Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors [J].
Esenaliev, RO ;
Karabutov, AA ;
Oraevsky, AA .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (04) :981-988
[8]   Determining a function from its mean values over a family of spheres [J].
Finch, D ;
Patch, SK ;
Rakesh .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) :1213-1240
[9]  
Gusev V. E., 1993, LASER OPTOACOUSTICS
[10]   Thermoacoustic computed tomography with large planar receivers [J].
Haltmeier, M ;
Scherzer, O ;
Burgholzer, P ;
Paltauf, G .
INVERSE PROBLEMS, 2004, 20 (05) :1663-1673