Lame function and invariants of multi-order exact solutions among nonlinear evolution equations

被引:14
作者
Liu, SK [1 ]
Chen, H [1 ]
Fu, ZT [1 ]
Liu, SD [1 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
关键词
Lame function; Jacobi elliptic function; multi-order exact solution; nonlinear evolution equation; perturbation method; invariants;
D O I
10.7498/aps.52.1842
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the perturbation method, the nonlinear evolution equations are expanded as multi-order approximate equations. And based on Lame equation and Lame function, these multi-order approximate equations can be solved by Jacobi elliptic function expansion method, where multi-order exact solutions of nonlinear evolution equations are derived. Then the invariants of the multi-order exact solutions are found among different nonlinear evolution equations.
引用
收藏
页码:1842 / 1847
页数:6
相关论文
共 27 条
[1]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[2]   Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method [J].
Fan, EG .
ACTA PHYSICA SINICA, 2000, 49 (08) :1409-1412
[3]  
FAN EG, 1998, ACTA PHYS SINICA, V47, P353
[4]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[5]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[6]   Explicit exact solutions to nonlinear coupled differential equations [J].
Li, ZB ;
Yao, RX .
ACTA PHYSICA SINICA, 2001, 50 (11) :2062-2067
[7]   Exact solitary wave and soliton solutions of the generalized fifth order KdV equation [J].
Li, ZB ;
Pan, SQ .
ACTA PHYSICA SINICA, 2001, 50 (03) :402-405
[8]   The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function [J].
Liu, SD ;
Fu, ZT ;
Liu, SK ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (04) :718-722
[9]   New periodic solutions to a kind of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (01) :10-14
[10]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073