Classifiers based on approximate reasoning schemes

被引:19
作者
Bazan, J [1 ]
Skowron, A [1 ]
机构
[1] Univ Rzeszow, Inst Math, PL-35959 Rzeszow, Poland
来源
MONITORING, SECURITY, AND RESCUE TECHNIQUES IN MULTIAGENT SYSTEMS | 2005年
关键词
D O I
10.1007/3-540-32370-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss classifiers [3] for complex concepts constructed from data sets and domain knowledge using approximate reasoning schemes (AR schemes). The approach is based on granular computing methods developed using rough set and rough mereological approaches [9, 13, 7]. In experiments we use a road simulator (see [15]) making it possible to collect data, e.g., on vehicle-agents movement on the road, at the crossroads, and data from different sensor-agents. We compare the quality of two classifiers: the standard rough set classifier based on the set of minimal decision rules and the classifier based on AR schemes.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 16 条
[1]  
Bazan J, 2003, LECT NOTES ARTIF INT, V2639, P181
[2]  
BAZAN J, 1998, COMPARISON DYNAMIC N, P321
[3]  
Friedman J., 2001, ELEMENTS STAT LEARNI, V1
[4]  
KLOESGEN W, 2002, HDB KDD
[5]  
Michie D., 1994, Technometrics, V13, P1
[6]  
PAL SK, 2004, ROUGH NEURO COMPUTIN
[7]  
Pawlak Z., 1991, Rough sets: Theoretical aspects of reasoning about data, DOI DOI 10.1007/978-94-011-3534-4
[8]  
Polkowski L, 2000, STUD FUZZ SOFT COMP, V56, P89
[9]  
POLKOWSKI L, 1999, ADAPTIVE CALCULUS GR, P201
[10]  
POLKOWSKI L, 1998, ROUGH SETS PERSPECTI, P1