Spontaneous symmetry breaking in graphene subjected to an in-plane magnetic field

被引:113
作者
Aleiner, I. L. [1 ]
Kharzeev, D. E. [2 ]
Tsvelik, A. M. [3 ,4 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
[4] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
D O I
10.1103/PhysRevB.76.195415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Application of the magnetic field parallel to the plane of the graphene sheet leads to the formation of electron- and holelike Fermi surfaces. Such situation is shown to be unstable with respect to the formation of an excitonic condensate even for an arbitrary weak magnetic field and interaction strength. At temperatures lower than the mean-field temperature, the order parameter amplitude is formed. The order parameter itself is a U(2) matrix allowing for the combined rotations in the spin and valley spaces. These rotations smoothly interpolate between site and bond centered spin-density waves and spin-flux states. The trigonal warping, short-range interactions, and the three-particle umklapp processes freeze some degrees of freedom at temperatures much smaller than the mean-field transition temperature, and make either Berezinskii-Kosterlitz-Thouless [Sov. Phys. JETP 32, 493 (1971); J. Phys. C 5, L124 (1972); 6, 1181 (1973)] (driven either by vortices or half-vortices) or Ising type transitions possible. Strong logarithmic renormalization for the coupling constants of these terms by the Coulomb interaction is calculated within one-loop renormalization group. It is found that in the presence of the Coulomb interaction, some short-range interaction terms become much greater than one might expect from the naive dimensionality counting.
引用
收藏
页数:27
相关论文
共 25 条
[1]  
ABANIN DA, 2007, PHYS REV LETT, V98
[2]  
Abrikosov A. A., 1963, Methods of Quantum Field Theory in Statistical Physics
[3]  
ABRIKOSOV AA, 1971, SOV PHYS JETP-USSR, V32, P699
[4]   Effect of disorder on transport in graphene [J].
Aleiner, I. L. ;
Efetov, K. B. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[5]  
ALEINER IL, UNPUB FORMULA 5 9 R
[6]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[7]  
Bir G. L., 1974, Symmetry and Strain-Induced Effects in Semiconductors
[8]   Cyclotron resonance study of the electron and hole velocity in graphene monolayers [J].
Deacon, R. S. ;
Chuang, K.-C. ;
Nicholas, R. J. ;
Novoselov, K. S. ;
Geim, A. K. .
PHYSICAL REVIEW B, 2007, 76 (08)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction [J].
González, J ;
Guinea, F ;
Vozmediano, MAH .
PHYSICAL REVIEW B, 1999, 59 (04) :R2474-R2477