New Bounds for Restricted Isometry Constants

被引:157
作者
Cai, T. Tony [1 ]
Wang, Lie [2 ]
Xu, Guangwu [3 ]
机构
[1] Univ Penn, Dept Stat, Wharton Sch, Philadelphia, PA 19140 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53211 USA
基金
美国国家科学基金会;
关键词
Compressed sensing; l(1) minimization; restricted isometry property; sparse signal recovery; STABLE RECOVERY; SIGNAL RECOVERY; SPARSE SIGNALS;
D O I
10.1109/TIT.2010.2054730
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses new bounds for restricted isometry constants in compressed sensing. Let Phi be an n x p real matrix and k be a positive integer with k <= n. One of the main results of this paper shows that if the restricted isometry constant delta(k) of Phi satisfies delta(k) < 0.307 then k-sparse signals are guaranteed to be recovered exactly via l(1) minimization when no noise is present and k-sparse signals can be estimated stably in the noisy case. It is also shown that the bound cannot be substantially improved. An explicit example is constructed in which delta(k) = k-1/2k-1 < 0.5, but it is impossible to recover certain k-sparse signals.
引用
收藏
页码:4388 / 4394
页数:7
相关论文
共 15 条
[1]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[2]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[3]   On Recovery of Sparse Signals Via l1 Minimization [J].
Cai, T. Tony ;
Xu, Guangwu ;
Zhang, Jun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :3388-3397
[4]   Stable Recovery of Sparse Signals and an Oracle Inequality [J].
Cai, Tony Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) :3516-3522
[5]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[6]  
CANDES EJ, 1946, COMPUTE RENDUS ACA 1, V346, P589
[7]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[8]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[9]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[10]  
Davies M. E., IEEE T INF IN PRESS