Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus

被引:96
作者
Wang, GG
Pasillas, MP
Kamps, MP
机构
[1] Univ Calif San Diego, Sch Med, Dept Pathol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Sch Med, Mol Pathol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Sch Med, Biomed Grad Sci Program, La Jolla, CA 92093 USA
关键词
D O I
10.1182/blood-2004-12-4664
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Meis1 is a homeodomain transcription factor coexpressed with Hoxa9 in most human acute myelold leukemias (AMLs). In mouse models of leukemia produced by Hoxa9, Mels1 accelerates leukemogenesis. Because Hoxa9 immortalizes myeloid progenitors in the absence of Meis1 expression, the contribution of Meis1 toward leukemia remains unclear. Here, we describe a cultured progenitor model in which Meis1 programs leukemogenicity. Progenitors immortalized by Hoxa9 in culture are myeloid-lineage restricted and only infrequently caused leukemia after more than 250 days. Coexpressed Meis1 programmed rapid AML-initiating character, maintained multipotent progenitor potential, and induced expression of genes associated with short-term hematopoletic stem cells (HSCs), such as FLT3 and CD34, whose expression also characterizes the leukemia-initiating stem cells of human AML. Meis1 leukemogenesis functions required binding to Pbx, binding to DNA, and a conserved function of its C-terminal tail. We hypothesize that Meis1 is required for the homing and survival of leukemic progenitors within their hematopoletic niches, functions mediated by HSC-specific genes such as CD34 and Fms-like tyrosine kinase 3 (FLT3), respectively. This is the first example of a transcription factor oncoprotein (Meis1) that establishes expression of a tyrosine kinase oncoprotein (FLT3), and explains their coexpression in human leukemia. This cultured progenitor model will be useful to define the genetic basis of leukemogenesis involving Hoxa9 and Meis1.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 40 条
[1]   Upregulation of flt3 expression within the bone marrow Lin-Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity [J].
Adolfsson, J ;
Borge, OJ ;
Bryder, D ;
Theilgaard-Mönch, K ;
Åstrand-Grundström, I ;
Sitnicka, E ;
Sasaki, Y ;
Jacobsen, SEW .
IMMUNITY, 2001, 15 (04) :659-669
[2]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[3]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[4]   CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow [J].
Avigdor, A ;
Goichberg, P ;
Shivtiel, S ;
Dar, A ;
Peled, A ;
Samira, S ;
Kollet, O ;
Hershkoviz, R ;
Alon, R ;
Hardan, I ;
Ben-Hur, H ;
Naor, D ;
Nagler, A ;
Lapidot, T .
BLOOD, 2004, 103 (08) :2981-2989
[5]   Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9 [J].
Ayton, PM ;
Cleary, ML .
GENES & DEVELOPMENT, 2003, 17 (18) :2298-2307
[6]   Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71-/HLA-DR- [J].
Blair, A ;
Hogge, DE ;
Sutherland, HJ .
BLOOD, 1998, 92 (11) :4325-4335
[7]   Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD 117) [J].
Blair, A ;
Sutherland, HJ .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (06) :660-671
[8]   Lymphoid-restricted development from multipotent candidate murine stem cells:: Distinct and complimentary functions of the c-kit and flt3-ligands [J].
Borge, OJ ;
Adolfsson, J ;
Mårtensson, A ;
Mårtensson, IL ;
Jacobsen, SEW .
BLOOD, 1999, 94 (11) :3781-3790
[9]   Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1 [J].
Calvo, KR ;
Sykes, DB ;
Pasillas, MP ;
Kamps, MP .
ONCOGENE, 2002, 21 (27) :4247-4256
[10]   Meis1a suppresses differentiation by G-CSF and promotes proliferation by SCF: Potential mechanisms of cooperativity with Hoxa9 in myeloid leukemia [J].
Calvo, KR ;
Knoepfler, PS ;
Sykes, DB ;
Pasillas, MP ;
Kamps, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13120-13125