Quantifying orbital migration from exoplanet statistics and host metallicities

被引:11
作者
Rice, WKM [1 ]
Armitage, PJ
机构
[1] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[3] Univ Colorado, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
planetary systems : formation; planets and satellites : formation; solar system : formation;
D O I
10.1086/432244
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate how the statistical distribution of extrasolar planets may be combined with knowledge of the host stars' metallicity to yield constraints on the migration histories of gas giant planets. At any radius, planets that barely manage to form around the lowest metallicity stars accrete their envelopes just as the gas disk is being dissipated, so the lower envelope of planets in a plot of metallicity versus semimajor axis defines a sample of nonmigratory planets that will have suffered less than average migration subsequent to gap opening. Under the assumption that metallicity largely controls the initial surface density of planetesimals, we use simplified core accretion models to calculate how the minimum metallicity needed for planet formation varies as a function of semimajor axis. Models that do not include core migration prior to gap opening ( type I migration) predict that the critical metallicity is largely flat between the snow line and a approximate to 6 AU, with a weak dependence on the initial surface density profile of planetesimals. When slow type I migration is included, the critical metallicity is found to increase steadily from 1 to 10 AU. Large planet samples that include planets at modestly greater orbital radii than present surveys therefore have the potential to quantify the extent of migration in both type I and type II regimes.
引用
收藏
页码:1107 / 1113
页数:7
相关论文
共 50 条
[1]   Migration and giant planet formation [J].
Alibert, Y ;
Mordasini, C ;
Benz, W .
ASTRONOMY & ASTROPHYSICS, 2004, 417 (01) :L25-L28
[2]   Dispersion in the lifetime and accretion rate of T Tauri discs [J].
Armitage, PJ ;
Clarke, CJ ;
Palla, F .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 342 (04) :1139-1146
[3]   Predictions for the frequency and orbital radii of massive extrasolar planets [J].
Armitage, PJ ;
Livio, M ;
Lubow, SH ;
Pringle, JE .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 334 (01) :248-256
[4]   Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs [J].
Bate, MR ;
Lubow, SH ;
Ogilvie, GI ;
Miller, KA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 341 (01) :213-229
[5]   The structure and appearance of protostellar accretion disks: Limits on disk flaring [J].
Bell, KR ;
Cassen, PM ;
Klahr, HH ;
Henning, T .
ASTROPHYSICAL JOURNAL, 1997, 486 (01) :372-387
[6]   Models of the in situ formation of detected extrasolar giant planets [J].
Bodenheimer, P ;
Hubickyj, O ;
Lissauer, JJ .
ICARUS, 2000, 143 (01) :2-14
[7]   CALCULATIONS OF THE ACCRETION AND EVOLUTION OF GIANT PLANETS - THE EFFECTS OF SOLID CORES [J].
BODENHEIMER, P ;
POLLACK, JB .
ICARUS, 1986, 67 (03) :391-408
[8]   Protoplanetary formation. I. Neptune [J].
Bryden, G ;
Lin, DNC ;
Ida, S .
ASTROPHYSICAL JOURNAL, 2000, 544 (01) :481-495
[9]   The planet-metallicity correlation [J].
Fischer, DA ;
Valenti, J .
ASTROPHYSICAL JOURNAL, 2005, 622 (02) :1102-1117
[10]  
FISCHER DA, 2004, IAU S, V219, P29