Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations

被引:107
作者
Yu, HB [1 ]
Dickinson, RE
Chin, M
Kaufman, YJ
Zhou, M
Zhou, L
Tian, Y
Dubovik, O
Holben, BN
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA
[3] NASA, Goddard Space Flight Ctr, Lab Atmospheres, Greenbelt, MD 20771 USA
关键词
aerosols; radiative forcing; albedo;
D O I
10.1029/2003JD003914
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] The aerosol direct solar effect under clear sky is assessed by ( 1) combining multiple aerosol characterizations and ( 2) using the satellite-retrieved land surface albedo. The aerosol characterization is made through an integration of the MODerate resolution Imaging Spectroradiometer (MODIS) retrievals and the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model simulations. The spectral and bidirectional albedo of land surface is derived from MODIS. On a global average, the solar forcing at the top of atmosphere (TOA) DFTOA is - 4.5 Wm(-2), of which about 1/3 is contributed by a sum of natural and anthropogenic sulfate and carbonaceous aerosols. Though the optical depth is about 50% higher over land than over ocean, no significant land-ocean contrast in this TOA forcing is observed. It is reduced by larger aerosol absorption and higher surface albedo over land. As a result of absorption by soot and dust, a much larger surface cooling and substantial atmospheric absorption coexist over land and adjacent oceans. Globally, the surface cooling DFSFC is about - 9.9 Wm(-2), and the atmospheric absorption DFAIR is about 5.4 Wm(-2), suggesting that more than half of the surface cooling results from the atmospheric absorption. Sensitivity tests show that an inclusion of MODIS-derived anisotropy of land surface reflection reduces the diurnal variation of TOA solar forcing, because of aerosol-induced changes in the fraction of direct beam and hence in the effective reflection from the surface. Constraining the GOCART dust absorption with recent measurements reduces DFAIR and DFSFC by 1.3 Wm(-2) and 0.9 Wm(-2), respectively, and increases the TOA cooling by 0.4 W m(-2).
引用
收藏
页数:15
相关论文
共 94 条
[1]   Reduction of tropical cloudiness by soot [J].
Ackerman, AS ;
Toon, OB ;
Stevens, DE ;
Heymsfield, AJ ;
Ramanathan, V ;
Welton, EJ .
SCIENCE, 2000, 288 (5468) :1042-1047
[2]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[3]  
[Anonymous], 2001, CLIM CHANG 2001
[4]   Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations -: art. no. 1748 [J].
Bellouin, N ;
Boucher, O ;
Tanré, D ;
Dubovik, O .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (14) :ASC6-1
[5]  
Bohren C., 1983, ABSORPTION SCATTERIN
[6]   Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols [J].
Boucher, O ;
Schwartz, SE ;
Ackerman, TP ;
Anderson, TL ;
Bergstrom, B ;
Bonnel, B ;
Chylek, P ;
Dahlback, A ;
Fouquart, Y ;
Fu, Q ;
Halthore, RN ;
Haywood, JM ;
Iversen, T ;
Kato, S ;
Kinne, S ;
Kirkevag, A ;
Knapp, KR ;
Lacis, A ;
Laszlo, I ;
Mishchenko, MI ;
Nemesure, S ;
Ramaswamy, V ;
Roberts, DL ;
Russell, P ;
Schlesinger, ME ;
Stephens, GL ;
Wagener, R ;
Wang, M ;
Wong, J ;
Yang, F .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D14) :16979-16998
[7]   Estimation of the aerosol perturbation to the Earth's radiative budget over oceans using POLDER satellite aerosol retrievals [J].
Boucher, O ;
Tanré, D .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (08) :1103-1106
[8]   Columnar aerosol single-scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust [J].
Cattrall, C ;
Carder, KL ;
Gordon, HR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[9]   Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls? [J].
Chameides, WL ;
Yu, H ;
Liu, SC ;
Bergin, M ;
Zhou, X ;
Mearns, L ;
Wang, G ;
Kiang, CS ;
Saylor, RD ;
Luo, C ;
Huang, Y ;
Steiner, A ;
Giorgi, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13626-13633
[10]   CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS [J].
CHARLSON, RJ ;
SCHWARTZ, SE ;
HALES, JM ;
CESS, RD ;
COAKLEY, JA ;
HANSEN, JE ;
HOFMANN, DJ .
SCIENCE, 1992, 255 (5043) :423-430