Behavior of graphite electrodes in solutions based on ionic liquids in in situ Raman studies

被引:65
作者
Markevich, E. [1 ]
Baranchugov, V. [1 ]
Salitra, G. [1 ]
Aurbach, D. [1 ]
Schmidt, Michael A. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Merck KgaA, D-64293 Darmstadt, Germany
关键词
D O I
10.1149/1.2811897
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, the behavior of composite graphite electrodes comprising synthetic graphite flakes in solutions based on a 1-methyl-1-propylpiperidinium [bis(trifluoromethylsulfonyl)] imide (MPPpTFSI) ionic liquid (IL) was investigated, using in situ Raman spectroscopy with microscopic lateral resolution, in conjunction with cyclic voltammetry. Both pure IL and IL solutions containing a LiN(SO2CF3)(2) (LiTFSI) salt were studied. Upon cathodic polarization, the IL cations (MPPp+) are intercalated. This process is irreversible in a pure IL solution. When the solution comprises both IL and a Li salt (LiTFSI), the graphite electrodes can intercalate simultaneously the IL cations MPPp+ and the Li cations at potentials similar to 0.5 V and below 0.3 V vs Li/Li+, respectively. The graphite electrodes become passivated due to the presence of the Li salt by the formation of surface films, which are Li-ion conducting, but electronically insulating. Hence, upon consecutive voltammetric cycling, the IL cation-intercalation is suppressed, while reversible Li intercalation becomes the dominant process. Raman spectroscopy enables one to distinguish among the various processes in these systems. (c) 2007 The Electrochemical Society.
引用
收藏
页码:A132 / A137
页数:6
相关论文
共 39 条
[1]   Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation [J].
Abe, T ;
Mizutani, Y ;
Kawabata, N ;
Inaba, M ;
Ogumi, Z .
SYNTHETIC METALS, 2001, 125 (02) :249-253
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Electrode-solution interactions in Li-ion batteries: a short summary and new insights [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2003, 119 :497-503
[4]   Morphology/behavior relationship in reversible electrochemical lithium insertion into graphitic materials [J].
Aurbach, D ;
Teller, H ;
Levi, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1255-A1266
[5]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[6]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[7]   Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes [J].
Buqa, H ;
Würsig, A ;
Goers, A ;
Hardwick, LJ ;
Holzapfel, M ;
Novák, P ;
Krumeich, F ;
Spahr, ME .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :134-141
[8]   Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review [J].
Buzzeo, MC ;
Evans, RG ;
Compton, RG .
CHEMPHYSCHEM, 2004, 5 (08) :1106-1120
[9]   Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation [J].
Chung, GC ;
Kim, HJ ;
Yu, SI ;
Jun, SH ;
Choi, JW ;
Kim, MH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4391-4398
[10]  
Dresselhaus MS, 2002, ADV PHYS, V51, P1, DOI [10.1080/00018730110113644, 10.1080/00018738100101367]