Excited-state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light-harvesting complex of photosystem II

被引:28
作者
Ruban, AV
Phillip, D
Young, AJ
Horton, P
机构
[1] Univ Sheffield, Robert Hill Inst, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[2] Liverpool John Moores Univ, Sch Biol & Earth Sci, Liverpool L3 5UX, Merseyside, England
关键词
D O I
10.1111/j.1751-1097.1998.tb05291.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism of action of xanthophyll cycle carotenoids in controlling the quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II (LHCIIb) has been investigated. Auroxanthin, a diepoxy carotenoid with 7 conjugated carbon double bonds, violaxanthin (9 conjugated double bonds) and zeaxanthin (11 conjugated double bonds) have been compared with regard to their effects in vitro on fluorescence quenching and LHCIIb oligomerization. It was found that auroxanthin stimulated fluorescence quenching, similar to the effect of zeaxanthin and in contrast to the inhibition caused by violaxanthin, Auroxanthin caused an increase in the oligomerization of LHCIlb and an increase in relative emission of long-wavelength fluorescence at 77 K, It is concluded that auroxanthin can mimic the effect of zeaxanthin on LHCII, strongly suggesting that the xanthophyll cycle carotenoids control quenching in vitro by an indirect structural effect and not by direct quenching of chlorophyll excited states.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 26 条
[1]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[2]   QUANTITATIVE STUDY OF THE SLOW DECLINE OF CHLOROPHYLL ALPHA-FLUORESCENCE IN ISOLATED-CHLOROPLASTS [J].
BRIANTAIS, JM ;
VERNOTTE, C ;
PICAUD, M ;
KRAUSE, GH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 548 (01) :128-138
[3]   THE APPLICATION OF THE ENERGY-GAP LAW TO THE S-1 ENERGIES AND DYNAMICS OF CAROTENOIDS [J].
CHYNWAT, V ;
FRANK, HA .
CHEMICAL PHYSICS, 1995, 194 (2-3) :237-244
[4]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[5]   PHOTOPROTECTION AND OTHER RESPONSES OF PLANTS TO HIGH LIGHT STRESS [J].
DEMMIGADAMS, B ;
ADAMS, WW .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :599-626
[6]   The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J].
DemmigAdams, B ;
Adams, WW .
TRENDS IN PLANT SCIENCE, 1996, 1 (01) :21-26
[7]   PHOTOPHYSICS OF THE CAROTENOIDS ASSOCIATED WITH THE XANTHOPHYLL CYCLE IN PHOTOSYNTHESIS [J].
FRANK, HA ;
CUA, A ;
CHYNWAT, V ;
YOUNG, A ;
GOSZTOLA, D ;
WASIELEWSKI, MR .
PHOTOSYNTHESIS RESEARCH, 1994, 41 (03) :389-395
[8]   XANTHOPHYLL CYCLE-DEPENDENT QUENCHING OF PHOTOSYSTEM-II CHLOROPHYLL-A FLUORESCENCE - FORMATION OF A QUENCHING COMPLEX WITH A SHORT FLUORESCENCE LIFETIME [J].
GILMORE, AM ;
HAZLETT, TL ;
GOVINDJEE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) :2273-2277
[9]   ZEAXANTHIN FORMATION AND ENERGY-DEPENDENT FLUORESCENCE QUENCHING IN PEA-CHLOROPLASTS UNDER ARTIFICIALLY MEDIATED LINEAR AND CYCLIC ELECTRON-TRANSPORT [J].
GILMORE, AM ;
YAMAMOTO, HY .
PLANT PHYSIOLOGY, 1991, 96 (02) :635-643
[10]   Regulation of light harvesting in green plants [J].
Horton, P ;
Ruban, AV ;
Walters, RG .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :655-684