Highly Active Pt3Pb and Core-Shell Pt3Pb-Pt Electrocatalysts for Formic Acid Oxidation

被引:174
作者
Kang, Yijin [1 ]
Qi, Liang [2 ]
Li, Meng [3 ]
Diaz, Rosa E. [4 ]
Su, Dong [4 ]
Adzic, Radoslav R. [3 ]
Stach, Eric [4 ]
Li, Ju [2 ]
Murray, Christopher B. [1 ,2 ]
机构
[1] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
platinum; lead; electrocatalysis; formic acid oxidation; core-shell; nanostructure; nanocrystal; FOREIGN METAL MONOLAYERS; FUEL-CELLS; BOROHYDRIDE REDUCTION; PLATINUM-ELECTRODES; 1ST PRINCIPLES; NANOPARTICLES; PTPB; ELECTROOXIDATION; METHANOL; NANOCRYSTALS;
D O I
10.1021/nn3003373
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt3Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt3Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt3Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt3Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application.
引用
收藏
页码:2818 / 2825
页数:8
相关论文
共 49 条
[1]   STRUCTURAL EFFECTS IN ELECTROCATALYSIS - OXIDATION OF FORMIC-ACID AND OXYGEN REDUCTION ON SINGLE-CRYSTAL ELECTRODES AND THE EFFECTS OF FOREIGN METAL ADATOMS [J].
ADZIC, RR ;
TRIPKOVIC, AV ;
MARKOVIC, NM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 150 (1-2) :79-88
[2]   ELECTROCHEMICAL OXIDATION OF FORMIC-ACID AT NOBLE-METALS - CATALYTIC EFFECTS OF FOREIGN METAL MONOLAYERS [J].
ADZIC, RR ;
SIMIC, DN ;
DESPIC, AR ;
DRAZIC, DM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 80 (01) :81-99
[3]   ELECTROCATALYSIS BY FOREIGN METAL MONOLAYERS - OXIDATION OF FORMIC-ACID ON PLATINUM [J].
ADZIC, RR ;
SIMIC, DN ;
DESPIC, AR ;
DRAZIC, DM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1975, 65 (02) :587-601
[4]   Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].
Alayoglu, Selim ;
Nilekar, Anand U. ;
Mavrikakis, Manos ;
Eichhorn, Bryan .
NATURE MATERIALS, 2008, 7 (04) :333-338
[5]   Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors:: Electrocatalytic oxidation of formic acid [J].
Alden, Laif R. ;
Han, Daniel K. ;
Matsumoto, Futoshi ;
Abruna, Hector D. ;
DiSalvo, Francis J. .
CHEMISTRY OF MATERIALS, 2006, 18 (23) :5591-5596
[6]   Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches [J].
Alden, Laif R. ;
Roychowdhury, Chandrani ;
Matsumoto, Futoshi ;
Han, Daniel K. ;
Zeldovich, Varvara B. ;
Abruna, Hector D. ;
DiSalvo, Francis J. .
LANGMUIR, 2006, 22 (25) :10465-10471
[7]   The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces [J].
Arenz, M ;
Stamenkovic, V ;
Schmidt, TJ ;
Wandelt, K ;
Ross, PN ;
Markovic, NM .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (19) :4242-4251
[8]   Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis [J].
Bauer, J. Chris ;
Chen, Xiaole ;
Liu, Qingsheng ;
Phan, Ting-Hao ;
Schaak, Raymond E. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (03) :275-282
[9]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[10]   Platinum nanoparticle shape effects on benzene hydrogenation selectivity [J].
Bratlie, Kaitlin M. ;
Lee, Hyunjoo ;
Komvopoulos, Kyriakos ;
Yang, Peidong ;
Somorjai, Gabor A. .
NANO LETTERS, 2007, 7 (10) :3097-3101