Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity

被引:202
作者
Brown, NR
Noble, MEM
Lawrie, AM
Morris, MC
Tunnah, P
Divita, G
Johnson, LN
Endicott, JA
机构
[1] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England
[2] Univ Oxford, Oxford Ctr Mol Sci, Oxford OX1 3QU, England
[3] CNRS, Ctr Rech Biochem Macromol, F-34293 Montpellier, France
关键词
D O I
10.1074/jbc.274.13.8746
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have prepared phosphorylated cyclin-dependent protein kinase 2 (CDK2) for crystallization using the CDK-activating kinase 1 (CAK1) from Saccharomyces cerevisiae and have grown crystals using microseeding techniques. Phosphorylation of monomeric human CDK2 by CAK1 is more efficient than phosphorylation of the binary CDK2-cyclin A complex. Phosphorylated CDK2 exhibits histone H1 kinase activity corresponding to approximately 0.3% of that observed with the fully activated phosphorylated CDK2-cyclin A complex. Fluorescence measurements have shown that Thr(160) phosphorylation increases the affinity of CDK2 for both histone substrate and ATP and decreases its affinity for ADP, By contrast, phosphorylation of CDK2 has a negligible effect on the affinity for cyclin A. The crystal structures of the ATP-bound forms of phosphorylated CDK2 and unphosphorylated CDK2 have been solved at 2.1-Angstrom resolution. The structures are similar, with the major difference occurring in the activation segment, which is disordered in phosphorylated CDK2, The greater mobility of the activation segment in phosphorylated CDK2 and the absence of spontaneous crystallization suggest that phosphorylated CDK2 may adopt several different mobile states. The majority of these states are likely to correspond to inactive conformations, but a small fraction of phosphorylated CDK2 may be in an active conformation and hence explain the basal activity observed.
引用
收藏
页码:8746 / 8756
页数:11
相关论文
共 57 条
[1]   PHOSPHOTRANSFERASE AND SUBSTRATE BINDING MECHANISM OF THE CAMP-DEPENDENT PROTEIN-KINASE CATALYTIC SUBUNIT FROM PORCINE HEART AS DEDUCED FROM THE 2.0 ANGSTROM STRUCTURE OF THE COMPLEX WITH MN2+ ADENYLYL IMIDODIPHOSPHATE AND INHIBITOR PEPTIDE PKI(5-24) [J].
BOSSEMEYER, D ;
ENGH, RA ;
KINZEL, V ;
PONSTINGL, H ;
HUBER, R .
EMBO JOURNAL, 1993, 12 (03) :849-859
[2]   THE CRYSTAL-STRUCTURE OF CYCLIN-A [J].
BROWN, NR ;
NOBLE, MEM ;
ENDICOTT, JA ;
GARMAN, EF ;
WAKATSUKI, S ;
MITCHELL, E ;
RASMUSSEN, B ;
HUNT, T ;
JOHNSON, LN .
STRUCTURE, 1995, 3 (11) :1235-1247
[3]   Activation mechanism of the MAP kinase ERK2 by dual phosphorylation [J].
Canagarajah, BJ ;
Khokhlatchev, A ;
Cobb, MH ;
Goldsmith, EJ .
CELL, 1997, 90 (05) :859-869
[4]   PHOSPHORYLATION INDEPENDENT ACTIVATION OF HUMAN CYCLIN-DEPENDENT KINASE-2 BY CYCLIN-A INVITRO [J].
CONNELLCROWLEY, L ;
SOLOMON, MJ ;
WEI, N ;
HARPER, JW .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (01) :79-92
[5]   CRYSTAL-STRUCTURE OF CYCLIN-DEPENDENT KINASE-2 [J].
DEBONDT, HL ;
ROSENBLATT, J ;
JANCARIK, J ;
JONES, HD ;
MORGAN, DO ;
KIM, SH .
NATURE, 1993, 363 (6430) :595-602
[6]   ACTIVATION OF HUMAN CYCLIN-DEPENDENT KINASES INVITRO [J].
DESAI, D ;
GU, Y ;
MORGAN, DO .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (05) :571-582
[7]   MAT1 (MENAGE-A-TROIS) A NEW RING FINGER PROTEIN SUBUNIT STABILIZING CYCLIN H-CDK7 COMPLEXES IN STARFISH AND XENOPUS CAK [J].
DEVAULT, A ;
MARTINEZ, AM ;
FESQUET, D ;
LABBE, JC ;
MORIN, N ;
TASSAN, JP ;
NIGG, EA ;
CAVADORE, JC ;
DOREE, M .
EMBO JOURNAL, 1995, 14 (20) :5027-5036
[8]  
DIVITA G, 1993, J BIOL CHEM, V268, P13178
[9]   CDC2 PHOSPHORYLATION IS REQUIRED FOR ITS INTERACTION WITH CYCLIN [J].
DUCOMMUN, B ;
BRAMBILLA, P ;
FELIX, MA ;
FRANZA, BR ;
KARSENTI, E ;
DRAETTA, G .
EMBO JOURNAL, 1991, 10 (11) :3311-3319
[10]   A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK [J].
Espinoza, FH ;
Farrell, A ;
ErdjumentBromage, H ;
Tempst, P ;
Morgan, DO .
SCIENCE, 1996, 273 (5282) :1714-1717