Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity

被引:15
作者
Feireisl, E
Takác, P
机构
[1] Acad Sci Czech Republic, Inst Math, CZ-11567 Prague 1, Czech Republic
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2001年 / 133卷 / 03期
关键词
Ginzburg-Landau equations; superconductivity; asymptotically autonomous dynamical process; gauge; global attractor; stabilization;
D O I
10.1007/s006050170020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The long-time dynamical properties of solutions (phi ,A) to the time-dependent Ginzburg-Landau (TDGL) equations of superconductivity are investigated. The applied magnetic field varies with time, but it is assumed to approach a long-time asymptotic limit. Sufficient conditions (in terms of the time rate of change of the applied magnetic field) are given which guarantee that the dynamical process defined by the TDGL equations is asymptotically autonomous, i.e., it approaches a dynamical system as time goes to infinity. Analyticity of an energy functional is used to show that every solution of the TDGL equations asymptotically approaches a (single) stationary solution of the (time-independent) Ginzburg-Landau equations. The standard "phi = -del . A" gauge is chosen.
引用
收藏
页码:197 / 221
页数:25
相关论文
共 31 条
[1]  
Abrikosov A., 1988, FUNDAMENTALS THEORY
[2]  
Adams R. A., 1975, SOBOLEV SPACES
[3]  
[Anonymous], 1979, ANN MAT PUR APPL
[4]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[5]  
de Gennes P. G., 1966, SUPERCONDUCTIVITY ME
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
DU Q, 1994, APPL ANAL, V53, P1
[8]  
ELLIOTT CM, 1992, EXISTENCE THEOREMS E
[9]  
Feireisl E, 1996, CR ACAD SCI I-MATH, V323, P251
[10]  
FEIREISL E, 1999, IN PRESS J DYNAMICS