Metabonomic deconvolution of embedded toxicity: Application to thioacetamide hepato- and nephrotoxicity

被引:132
作者
Waters, NJ
Waterfield, CJ
Farrant, RD
Holmes, E
Nicholson, JK
机构
[1] Univ London Imperial Coll Sci & Technol, Div Biomed Sci, London SW7 2AZ, England
[2] GlaxoSmithKline Res & Dev Ltd, Ware SG12 0DP, Herts, England
[3] GlaxoSmithKline Res & Dev Ltd, Stevenage SG1 2NY, Herts, England
关键词
D O I
10.1021/tx049869b
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We present here the potential of an integrated metabonomic strategy to deconvolute the biofluid metabolic signatures in experimental animals following multiple organ toxicities, using the well-known hepato- and nephrotoxin, thioacetamide. Male Han-Wistar rats were dosed with thioacetamide (150 mg/kg, n = 25), and urine, plasma, liver, and kidney samples were collected postdose for conventional NMR and magic angle spinning (MAS) NMR spectroscopy. These data were correlated with histopathology and plasma clinical chemistry collected at all time points. H-1 MAS NMR data from liver and kidney were related to sequential H-1 NMR measurements in urine and plasma using pattern recognition methods. One-dimensional H-1 NMR spectra were data-reduced and analyzed using principal components analysis (PCA) to show the time-dependent biochemical variations induced by thioacetamide toxicity. From the eigenvector loadings of the PCA, those regions of the H-1 NMR spectra, and hence the combinations of endogenous metabolites marking the main phase of the toxic episode, were identified. The thioacetamide-induced biochemical manifestations included a renal and hepatic lipidosis accompanied by hypolipidaemia; increased urinary excretion of taurine and creatine concomitant with elevated creatine in liver, kidney, and plasma; a shift in energy metabolism characterized by depleted liver glucose and glycogen; reduced urinary excretion of tricarboxylic acid cycle intermediates and raised plasma ketone bodies; increased levels of tissue and plasma amino acids leading to amino aciduria verifying necrosis-enhanced protein degradation and renal dysfunction; and elevated hepatic and urinary bile acids indicating secondary damage to the biliary system. This integrated metabonomic approach has been able to identify the tissue of origin for biomarkers present in the metabolic profiles of biofluids, following the onset and progression of a multiorgan pathology, and as such highlights its potential in the evaluation of embedded toxicity in novel drug candidates.
引用
收藏
页码:639 / 654
页数:16
相关论文
共 80 条
[1]  
AIGNERHELD R, 1980, PHYSIOL CHEM PHYS M, V12, P389
[2]  
ANGHILERI LJ, 1976, INT J CLIN PHARM BI, V14, P101
[3]  
[Anonymous], 1998, Chemometrics: A Practical Guide
[4]  
ANTHONY ML, 1994, MOL PHARMACOL, V46, P199
[5]   Urinary excretion of free and acetylated polyamines in hepatocellular carcinoma [J].
Antoniello, S ;
Auletta, M ;
Magri, P ;
Pardo, F .
INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 1998, 13 (02) :92-97
[6]  
BAGNASCO S, 1986, J BIOL CHEM, V261, P5872
[7]  
BARKER EA, 1972, MOL PHARMACOL, V8, P318
[8]   Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins [J].
Beckwith-Hall, BM ;
Nicholson, JK ;
Nicholls, AW ;
Foxall, PJD ;
Lindon, JC ;
Connor, SC ;
Abdi, M ;
Connelly, J ;
Holmes, E .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (04) :260-272
[9]  
Bollard ME, 2000, MAGNET RESON MED, V44, P201, DOI 10.1002/1522-2594(200008)44:2<201::AID-MRM6>3.0.CO
[10]  
2-5