Stable indirect fuzzy adaptive control

被引:75
作者
Golea, N
Golea, A [1 ]
Benmahammed, K
机构
[1] Oum El Bouaghi, Inst Elect Engn, Oum El Bouaghi 04000, Algeria
[2] Biskra Univ, Inst Elect Engn, Biskra 07000, Algeria
[3] Setif Univ, Inst Elect, Setif 19000, Algeria
关键词
fuzzy control; fuzzy systems model; adaptive control; observer; nonlinear systems;
D O I
10.1016/S0165-0114(02)00279-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates new fuzzy model-based observer adaptive control for multi-input multi-output continuous-time nonlinear systems. The proposed adaptive scheme uses Takagi-Seguno (TS) fuzzy models to estimate the plant states and dynamics. Using stability arguments, it is shown that the proposed scheme is globally asymptotically stable. The observation and tracking errors are shown to converge asymptotically to zero, despite the presence of external disturbances and approximation errors. The performance of the developed approach is illustrated, by simulation, on two-link robot model. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1998, Fuzzy control
[2]   CANONICAL FORM OBSERVER DESIGN FOR NON-LINEAR TIME-VARIABLE SYSTEMS [J].
BESTLE, D ;
ZEITZ, M .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 38 (02) :419-431
[3]   SUGENO TYPE CONTROLLERS ARE UNIVERSAL CONTROLLERS [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1993, 53 (03) :299-303
[4]   Robust model reference adaptive control of nonlinear systems using fuzzy systems [J].
Chen, CS ;
Chen, WL .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1996, 27 (12) :1435-1442
[5]   A MODEL-REFERENCE CONTROL-STRUCTURE USING A FUZZY NEURAL-NETWORK [J].
CHEN, YC ;
TENG, CC .
FUZZY SETS AND SYSTEMS, 1995, 73 (03) :291-312
[6]  
Fantuzzi C, 1996, FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P1067, DOI 10.1109/FUZZY.1996.552326
[7]   LINEARIZATION BY OUTPUT INJECTION AND NON-LINEAR OBSERVERS [J].
KRENER, AJ ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1983, 3 (01) :47-52
[8]   Neurofuzzy-model-following control of MIMO nonlinear systems [J].
Lin, WS ;
Tsai, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1999, 146 (02) :157-164
[9]   Stable multi-input multi-output adaptive fuzzy neural control [J].
Ordóñez, R ;
Passino, KM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (03) :345-353
[10]  
Rovatti R, 1996, FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P1060, DOI 10.1109/FUZZY.1996.552325