Improved access to sequential motifs:: A note on the architectural bias of recurrent networks

被引:5
作者
Bodén, M [1 ]
Hawkins, J [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2005年 / 16卷 / 02期
关键词
architectural bias; biological sequence; bioinformaties; recurrent neural network;
D O I
10.1109/TNN.2005.844086
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many biological sequence problems the available data occupies only sparse regions of the problem space. To use machine learning effectively for the analysis of sparse data we must employ architectures with an appropriate bias. By experimentation we show that the bias of recurrent neural networks-recently analyzed by Tino, et al. and Hammer and Tino-offers superior access to motifs (sequential patterns) compared to the, in bioinformatics, standardly used feedforward neural networks.
引用
收藏
页码:491 / 494
页数:4
相关论文
共 9 条
  • [1] Exploiting the past and the future in protein secondary structure prediction
    Baldi, P
    Brunak, S
    Frasconi, P
    Soda, G
    Pollastri, G
    [J]. BIOINFORMATICS, 1999, 15 (11) : 937 - 946
  • [2] Toward a connectionist model of recursion in human linguistic performance
    Christiansen, MH
    Chater, N
    [J]. COGNITIVE SCIENCE, 1999, 23 (02) : 157 - 205
  • [3] Recurrent neural networks with small weights implement definite memory machines
    Hammer, B
    Tino, P
    [J]. NEURAL COMPUTATION, 2003, 15 (08) : 1897 - 1929
  • [4] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [5] KOLEN JF, 1994, PROCEEDINGS OF THE 1993 CONNECTIONIST MODELS SUMMER SCHOOL, P203
  • [6] Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    Pollastri, G
    Przybylski, D
    Rost, B
    Baldi, P
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (02) : 228 - 235
  • [7] Learning nonregular languages: A comparison of simple recurrent networks and LSTM
    Schmidhuber, J
    Gers, F
    Eck, D
    [J]. NEURAL COMPUTATION, 2002, 14 (09) : 2039 - 2041
  • [8] Markovian architectural bias of recurrent neural networks
    Tino, P
    Cernansky, M
    Benusková, L
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (01): : 6 - 15
  • [9] Architectural bias in recurrent neural networks: Fractal analysis
    Tino, P
    Hammer, B
    [J]. NEURAL COMPUTATION, 2003, 15 (08) : 1931 - 1957