Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY

被引:36
作者
Buskiewicz, I
Kubarenko, A
Peske, F
Rodnina, MV
Wintermeyer, W
机构
[1] Univ Witten Herdecke, Inst Mol Biol, D-58448 Witten, Germany
[2] Univ Witten Herdecke, Inst Phys Biochem, D-58448 Witten, Germany
关键词
protein targeting; translation; protein export; bimane cross-linking; fluorescence resonance energy transfer;
D O I
10.1261/rna.7242305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. in Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain-domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex.
引用
收藏
页码:947 / 957
页数:11
相关论文
共 33 条
[1]   Crystal structure of the ribonucleoprotein core of the signal recognition particle [J].
Batey, RT ;
Rambo, RP ;
Lucast, L ;
Rha, B ;
Doudna, JA .
SCIENCE, 2000, 287 (5456) :1232-+
[2]   Structural and energetic analysis of metal ions essential to SRP signal recognition domain assembly [J].
Batey, RT ;
Doudna, JA .
BIOCHEMISTRY, 2002, 41 (39) :11703-11710
[3]   Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle [J].
Batey, RT ;
Sagar, MB ;
Doudna, JA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :229-246
[4]   MODEL FOR SIGNAL SEQUENCE RECOGNITION FROM AMINO-ACID-SEQUENCE OF 54K SUBUNIT OF SIGNAL RECOGNITION PARTICLE [J].
BERNSTEIN, HD ;
PORITZ, MA ;
STRUB, K ;
HOBEN, PJ ;
BRENNER, S ;
WALTER, P .
NATURE, 1989, 340 (6233) :482-486
[5]   Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor [J].
Buskiewicz, I ;
Deuerling, E ;
Gu, SQ ;
Jöckel, J ;
Rodnina, MV ;
Bukau, B ;
Wintermeyer, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7902-7906
[6]   Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry [J].
Chu, FX ;
Shan, SO ;
Moustakas, DT ;
Alber, F ;
Egea, PF ;
Stroud, RM ;
Walter, P ;
Burlingame, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16454-16459
[7]   Structural insights into the signal recognition particle [J].
Doudna, JA ;
Batey, RT .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :539-557
[8]   Substrate twinning activates the signal recognition particle and its receptor [J].
Egea, PF ;
Shan, SO ;
Napetschnig, J ;
Savage, DF ;
Walter, P ;
Stroud, RM .
NATURE, 2004, 427 (6971) :215-221
[9]   Heterodimeric GTPase core of the SRP targeting complex [J].
Focia, PJ ;
Shepotinovskaya, IV ;
Seidler, JA ;
Freymann, DM .
SCIENCE, 2004, 303 (5656) :373-377
[10]   Structure of the conserved GTPase domain of the signal recognition particle [J].
Freymann, DM ;
Keenan, RJ ;
Stroud, RM ;
Walter, P .
NATURE, 1997, 385 (6614) :361-364