Evidence for a modifying pathway in SMA discordant families:: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1

被引:103
作者
Helmken, C
Hofmann, Y
Schoenen, F
Oprea, G
Raschke, H
Rudnik-Schöneborn, S
Zerres, K
Wirth, B
机构
[1] Univ Bonn, Inst Human Genet, D-53111 Bonn, Germany
[2] Univ Cologne, Inst Human Genet, D-50931 Cologne, Germany
[3] Rhein Westfal TH Aachen, Inst Human Genet, D-5100 Aachen, Germany
关键词
D O I
10.1007/s00439-003-1025-2
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Proximal spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutations of the SMN1 gene. SMN1 interacts with multiple proteins with functions in snRNP biogenesis, pre-mRNA splicing and presumably neural transport. SMN2, a nearly identical copy of SMN1, produces predominantly exon 7-skipped transcripts, whereas SMN1 mainly produces full-length transcripts. The SR-like splicing factor Htra2-beta1 facilitates correct splicing of SMN2 exon 7 through direct interaction with an exonic splicing enhancer within exon 7. In rare cases, siblings with identical 5q13-homologues and homozygous absence of SMN1 show variable phenotypes, suggesting that SMA is modified by other factors. By analysing nine SMA discordant families, we demonstrate that in all families unaffected siblings produce significantly higher amounts of SMN, Gemin2, Gemin3, ZPR1 and hnRNP-Q protein in lymphoblastoid cell lines, but not in primary fibroblasts, compared with their affected siblings. Protein p53, an additional SMN-interacting protein, is not subject to an SMN-dependent regulation. Surprisingly, Htra2-beta1 is also regulated by this tissue-specific mechanism. A similar regulation was found in all type I-III SMA patients, although at a different protein level than in discordant families. Thus, our data show that reduced SMN protein levels cause a reduction in the amount of its interacting proteins and of Htra2-beta1 in both discordant and non-discordant SMA families. We provide evidence that an intrinsic SMA modifying factor acts directly on the expression of SMN, thus influencing the SMA phenotype. Further insights into the molecular pathway and the identification of SMA modifying gene(s) may help to find additional targets for a therapy approach.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 44 条
[1]   GENETIC HOMOGENEITY BETWEEN CHILDHOOD-ONSET AND ADULT-ONSET AUTOSOMAL RECESSIVE SPINAL MUSCULAR-ATROPHY [J].
BRAHE, C ;
SERVIDEI, S ;
ZAPPATA, S ;
RICCI, E ;
TONALI, P ;
NERI, G .
LANCET, 1995, 346 (8977) :741-742
[2]   When is a deletion not a deletion? When it is converted [J].
Burghes, AHM .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (01) :9-15
[3]   Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? [J].
Campbell, L ;
Hunter, KMD ;
Mohaghegh, P ;
Tinsley, JM ;
Brasch, MA ;
Davies, KE .
HUMAN MOLECULAR GENETICS, 2000, 9 (07) :1093-1100
[4]   Genomic variation and gene conversion in spinal muscular atrophy: Implications for disease process and clinical phenotype [J].
Campbell, L ;
Potter, A ;
Ignatius, J ;
Dubowitz, V ;
Davies, K .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (01) :40-50
[5]   Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1 [J].
Cartegni, L ;
Krainer, AR .
NATURE GENETICS, 2002, 30 (04) :377-384
[6]   The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body [J].
Carvalho, T ;
Almeida, F ;
Calapez, A ;
Lafarga, M ;
Berciano, MT ;
Carmo-Fonseca, M .
JOURNAL OF CELL BIOLOGY, 1999, 147 (04) :715-727
[7]   Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1181-1193
[8]  
COBBEN JM, 1995, AM J HUM GENET, V57, P805
[9]   Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR:: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy [J].
Feldkötter, M ;
Schwarzer, V ;
Wirth, R ;
Wienker, TF ;
Wirth, B .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (02) :358-368
[10]   The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis [J].
Fischer, U ;
Liu, Q ;
Dreyfuss, G .
CELL, 1997, 90 (06) :1023-1029