Microwave-assisted chemical vapor deposition process for synthesizing carbon nanotubes

被引:8
作者
Kuo, TF [1 ]
Juang, ZY
Tsai, CH
Tsau, YM
Cheng, HF
Lin, IN
机构
[1] Natl Tsing Hua Univ, Ctr Mat Sci, Hsinchu 300, Taiwan
[2] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan
[3] Natl Taiwan Normal Univ, Dept Phys, Taipei 117, Taiwan
[4] Natl Tsing Hua Univ, Ctr Mat Sci, Hsinchu 300, Taiwan
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2001年 / 19卷 / 03期
关键词
D O I
10.1116/1.1352722
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A chemical vapor deposition (CVD) process is described that uses a susceptor to absorb the microwave and self-generate the heat for growing carbon nanotubes (CNTs) on a Si substrate. A high deposition rate of CNTs over a large area has been achieved, compared to the conventional CVD process, in which the reaction chamber was heated to the growing temperature (similar to 1100 degreesC) to trigger the reaction between the CH4 gas species and the catalyst. The modified CVD process possesses a pronounced advantage in the simplicity of the react on chamber design because no external heating is required. The size of the substrate is, in principle, unlimited as long as the susceptors can absorb the microwave uniformly. However, the design of the processing chamber and the choice of susceptors are very critical for successfully growing the CNTs using such a microwave-assisted CVD process. (C) 2001 American Vacuum Society.
引用
收藏
页码:1030 / 1033
页数:4
相关论文
共 12 条
[1]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[2]   Electron field emitters based on carbon nanotube films [J].
deHeer, WA ;
Bonard, JM ;
Fauth, K ;
Chatelain, A ;
Forro, L ;
Ugarte, D .
ADVANCED MATERIALS, 1997, 9 (01) :87-&
[3]   PHYSICS OF CARBON NANOTUBES [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
SAITO, R .
CARBON, 1995, 33 (07) :883-891
[4]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202
[5]   SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER [J].
IIJIMA, S ;
ICHIHASHI, T .
NATURE, 1993, 363 (6430) :603-605
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   Single- and multi-wall carbon nanotube field-effect transistors [J].
Martel, R ;
Schmidt, T ;
Shea, HR ;
Hertel, T ;
Avouris, P .
APPLIED PHYSICS LETTERS, 1998, 73 (17) :2447-2449
[8]   Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors [J].
Nagy, G ;
Levy, M ;
Scarmozzino, R ;
Osgood, RM ;
Dai, H ;
Smalley, RE ;
Michaels, CA ;
Flynn, GW ;
McLane, GF .
APPLIED PHYSICS LETTERS, 1998, 73 (04) :529-531
[9]   Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J].
Rao, AM ;
Richter, E ;
Bandow, S ;
Chase, B ;
Eklund, PC ;
Williams, KA ;
Fang, S ;
Subbaswamy, KR ;
Menon, M ;
Thess, A ;
Smalley, RE ;
Dresselhaus, G ;
Dresselhaus, MS .
SCIENCE, 1997, 275 (5297) :187-191
[10]   Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot [J].
Ren, ZF ;
Huang, ZP ;
Wang, DZ ;
Wen, JG ;
Xu, JW ;
Wang, JH ;
Calvet, LE ;
Chen, J ;
Klemic, JF ;
Reed, MA .
APPLIED PHYSICS LETTERS, 1999, 75 (08) :1086-1088