Choosing multiple parameters for support vector machines

被引:1663
作者
Chapelle, O [1 ]
Vapnik, V
Bousquet, O
Mukherjee, S
机构
[1] LIP6, Paris, France
[2] AT&T Labs Res, Middletown, NJ 07748 USA
[3] Ecole Polytech, F-91128 Palaiseau, France
[4] MIT, Cambridge, MA 02139 USA
关键词
support vector machines; kernel selection; leave-one-out procedure; gradient descent; feature selection;
D O I
10.1023/A:1012450327387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.
引用
收藏
页码:131 / 159
页数:29
相关论文
共 22 条
  • [1] BENGIO Y, 2000, NEURAL COMPUT, V12, P8
  • [2] Bonnans JF., 2013, PERTURBATION ANAL OP
  • [3] CHAPELLE O, 1999, ADV NEURAL INFORMATI
  • [4] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [5] CRISTIANINI N, 1999, ADV NEURAL INFORMATI
  • [6] Cristianini N, 2000, Intelligent Data Analysis: An Introduction
  • [7] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [8] HEISELE B, 2000, 1687 AI MIT
  • [9] Jaakkola T, 1999, P 1999 C AI STAT
  • [10] JOACHIMS T, 2000, P INT C MACH LEARN S