Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells

被引:172
作者
Kim, Ki-Hyun [2 ]
Kang, Hyunbum [2 ]
Kim, Hyeong Jun [2 ]
Kim, Pan Seok [1 ]
Yoon, Sung Cheol [1 ]
Kim, Bumjoon J. [2 ]
机构
[1] Korea Res Inst Chem Technol, Adv Mat Div, Taejon 305600, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
关键词
electron acceptors; solubilizing groups; fullerene bis-adducts; interfacial tensions; polymer solar cells; OPEN-CIRCUIT VOLTAGE; HIGHLY EFFICIENT; ORGANIC PHOTOVOLTAICS; SELF-ORGANIZATION; PERFORMANCE; ACCEPTOR; COMPATIBILIZERS; DERIVATIVES; COPOLYMERS; BISADDUCTS;
D O I
10.1021/cm3010369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural control of solubilizing side groups in fullerene-based electron acceptors is critically important to optimize their performance in bulk heterojunction (BHJ)-type polymer solar cell (PSC) devices. The structural changes of fullerene derivatives affect not only their optical and electrochemical properties but also their solubility and miscibility with electron donor polymers. Herein, we synthesized a series of o-xylenyl C-60 bis-adduct (OXCBA) derivatives with different solubilizing side groups to systematically investigate the effects of fullerene derivative structures on the photovoltaic properties of PSCs. The xylenyl side groups on the OXCBA were modified to produce several different OXCBA derivatives in which the xylenyl groups were functionalized with fluorine (FXCBA), nitro (NXCBA), methoxy and bromine (BMXCBA), and phenyl groups (ACBA). End group modifications of OXCBA dramatically affect photovoltaic performance in blend films with poly(3-hexylthiophene) (P3HT), resulting in power conversion efficiencies (PCEs) ranging from 1.7 to 5.3%. We found that this large range in PCE values is mainly due to differences in the blend morphology and interfacial area of the P3HT:OXCBA derivative films caused by changes in the hydrophobicity of the OXCBA derivatives and their interaction with P3HT. The trend in photovoltaic performance of the different OXCBA derivatives agrees well with those of the interfacial tension, PL quenching, and exciton dissociation probability, which suggests that changes in the interaction with P3HT are largely responsible for their photovoltaic performances. Finally, the OXCBA derivatives were applied in inverted type PSC devices. We note that P3HT:OXCBA blend devices exhibited more than 5% PCE with excellent air stability, which is one of the best inverted type devices based on the P3HT polymer in a simple device architecture without any extra interlayers.
引用
收藏
页码:2373 / 2381
页数:9
相关论文
共 66 条
[1]   Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers [J].
Alam, MM ;
Jenekhe, SA .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4647-4656
[2]  
[Anonymous], J AM CHEM SOC
[3]   High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives [J].
Backer, Scott A. ;
Sivula, Kevin ;
Kavulak, David F. ;
Frechet, Jean M. J. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2927-2929
[4]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[5]  
2-W
[6]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[7]   Examining the Effect of the Dipole Moment on Charge Separation in Donor-Acceptor Polymers for Organic Photovoltaic Applications [J].
Carsten, Bridget ;
Szarko, Jodi M. ;
Son, Hae Jung ;
Wang, Wei ;
Lu, Luyao ;
He, Feng ;
Rolczynski, Brian S. ;
Lou, Sylvia J. ;
Chen, Lin X. ;
Yu, Luping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) :20468-20475
[8]   Ladder-Type Nonacyclic Structure Consisting of Alternate Thiophene and Benzene Units for Efficient Conventional and Inverted Organic Photovoltaics [J].
Cheng, Yen-Ju ;
Chen, Chiu-Hsiang ;
Lin, Yu-Shun ;
Chang, Chih-Yu ;
Hsu, Chain-Shu .
CHEMISTRY OF MATERIALS, 2011, 23 (22) :5068-5075
[9]   Morphological Stabilization by In Situ Polymerization of Fullerene Derivatives Leading to Efficient, Thermally Stable Organic Photovoltaics [J].
Cheng, Yen-Ju ;
Hsieh, Chao-Hsiang ;
Li, Pei-Jung ;
Hsu, Chain-Shu .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (09) :1723-1732
[10]   Combination of Indene-C60 Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells [J].
Cheng, Yen-Ju ;
Hsieh, Chao-Hsiang ;
He, Youjun ;
Hsu, Chain-Shu ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (49) :17381-17383