Characterization of the frameshift signal of Edr, a mammalian example of programmed-1 ribosomal frameshifting

被引:78
作者
Manktelow, E
Shigemoto, K
Brierley, I
机构
[1] Univ Cambridge, Dept Pathol, Div Virol, Cambridge CB2 1QP, England
[2] Ehime Univ, Sch Med, Dept Environm Hlth & Social Med, Toon, Ehime 7910295, Japan
基金
英国医学研究理事会;
关键词
D O I
10.1093/nar/gki299
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ribosomal frameshifting signal of the mouse embryonal carcinoma differentiation regulated (Edr) gene represents the sole documented example of programmed -1 frameshifting in mammalian cellular genes [Shigemoto, K., Brennan, J., Walls, E,. Watson, C. J., Stott, D., Rigby, P. W. and Reith, A. D. (2001), Nucleic Acids Res., 29, 4079-4088]. Here, we have employed site-directed mutagenesis and RNA structure probing to characterize the Edr signal. We began by confirming the functionality and magnitude of the signal and the role of a GGGAAAC motif as the slippery sequence. Subsequently, we derived a model of the Edr stimulatory RNA and assessed its similarity to those stimulatory RNAs found at viral frameshift sites. We found that the structure is an RNA pseudoknot possessing features typical of retroviral frameshifter pseudoknots. From these experiments, we conclude that the Edr signal and by inference, the human orthologue PEG10, do not represent a novel 'cellular class' of programmed -1 ribosomal frameshift signal, but rather are similar to viral examples, albeit with some interesting features. The similarity to viral frameshift signals may complicate the design of antiviral therapies that target the frameshift process.
引用
收藏
页码:1553 / 1563
页数:11
相关论文
共 53 条
[1]   Programmed ribosomal frameshifting in decoding the SARS-CoV genome [J].
Baranov, PV ;
Henderson, CM ;
Anderson, CB ;
Gesteland, RF ;
Atkins, JF ;
Howard, MT .
VIROLOGY, 2005, 332 (02) :498-510
[2]   Recoding: translational bifurcations in gene expression [J].
Baranov, PV ;
Gesteland, RF ;
Atkins, JF .
GENE, 2002, 286 (02) :187-201
[3]   Towards a computational model for-1 eukaryotic frameshifting sites [J].
Bekaert, M ;
Bidou, L ;
Denise, A ;
Duchateau-Nguyen, G ;
Forest, JP ;
Froidevaux, C ;
Hatin, I ;
Rousset, JP ;
Termier, M .
BIOINFORMATICS, 2003, 19 (03) :327-335
[4]   PROGRAMMED RIBOSOMAL FRAMESHIFTING GENERATES THE ESCHERICHIA-COLI DNA POLYMERASE-III GAMMA SUBUNIT FROM WITHIN THE GAMMA-SUBUNIT READING FRAME [J].
BLINKOWA, AL ;
WALKER, JR .
NUCLEIC ACIDS RESEARCH, 1990, 18 (07) :1725-1729
[5]   TRANSLATIONAL FRAMESHIFTING MEDIATED BY A VIRAL SEQUENCE IN PLANT-CELLS [J].
BRAULT, V ;
MILLER, WA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2262-2266
[6]   MUTATIONAL ANALYSIS OF THE RNA PSEUDOKNOT COMPONENT OF A CORONAVIRUS RIBOSOMAL FRAMESHIFTING SIGNAL [J].
BRIERLEY, I ;
ROLLEY, NJ ;
JENNER, AJ ;
INGLIS, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (04) :889-902
[7]   Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting [J].
Brierley, I ;
Pennell, S .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2001, 66 :233-248
[8]   CHARACTERIZATION OF AN EFFICIENT CORONAVIRUS RIBOSOMAL FRAMESHIFTING SIGNAL - REQUIREMENT FOR AN RNA PSEUDOKNOT [J].
BRIERLEY, I ;
DIGARD, P ;
INGLIS, SC .
CELL, 1989, 57 (04) :537-547
[9]   RIBOSOMAL FRAMESHIFTING ON VIRAL RNAS [J].
BRIERLEY, I .
JOURNAL OF GENERAL VIROLOGY, 1995, 76 :1885-1892
[10]   TRANSLATIONAL FRAMESHIFTING IN THE CONTROL OF TRANSPOSITION IN BACTERIA [J].
CHANDLER, M ;
FAYET, O .
MOLECULAR MICROBIOLOGY, 1993, 7 (04) :497-503