Nonlinear stability theorem for high-intensity charged particle beams

被引:57
作者
Davidson, RC [1 ]
机构
[1] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1103/PhysRevLett.81.991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to derive a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge bunch) propagating with average axial velocity upsilon(b) = const. It is shown that a sufficient condition for linear and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribution be a monotonically decreasing function of the single-particle energy H' in the beam frame, i.e., partial derivative f(eq)(H')/partial derivative H' less than or equal to 0.
引用
收藏
页码:991 / 994
页数:4
相关论文
共 12 条
[1]   THERMAL-EQUILIBRIUM OF BUNCHED CHARGED-PARTICLE BEAMS [J].
BROWN, N ;
REISER, M .
PHYSICS OF PLASMAS, 1995, 2 (03) :965-971
[2]  
DAVIDSON RB, IN PRESS
[3]   VLASOV EQUILIBRIA AND STABILITY OF AN ELECTRON GAS [J].
DAVIDSON, RC ;
KRALL, NA .
PHYSICS OF FLUIDS, 1970, 13 (06) :1543-&
[4]  
DAVIDSON RC, 1990, PHYSICS NONNEUTRAL P
[5]  
DUBIN DHE, IN PRESS REV MOD PHY
[6]   LYAPUNOVS STABILITY CRITERIA FOR PLASMAS [J].
FOWLER, TK .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (04) :559-&
[7]   BOUND ON THE ENERGY AVAILABLE FROM A PLASMA [J].
GARDNER, CS .
PHYSICS OF FLUIDS, 1963, 6 (06) :839-840
[8]  
Hofmann I., 1983, Particle Accelerators, V13, P145
[9]  
NEWCOMB W, 1958, PHYS REV, V109, P10
[10]  
Reiser M., 1994, THEORY DESIGN CHARGE