M-band nonlinear subband decompositions with perfect reconstruction

被引:48
作者
Hampson, FJ [1 ]
Pesquet, JC [1 ]
机构
[1] Univ Paris Sud, CNRS, Signaux & Syst Lab, ESE, F-91192 Gif Sur Yvette, France
关键词
feature sieves; morphological filters; multirate filterbanks; multiresolution analysis; nonlinear filters; perfect reconstruction; subband systems;
D O I
10.1109/83.725362
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate nonlinear multirate filterbanks with maximal decimation and perfect reconstruction. Definitions of the desired properties of such structures are given for general nonlinear filterbanks. We then consider a triangular representation of linear filterbanks and see that it may be easily extended to the nonlinear case. Furthermore, general nonlinear filterbanks are presented, for which perfect reconstruction is either inherently guaranteed or ensured subject to an easily verified condition. Extensions to bidimensional filters are also discussed and an application for nonlinear multiresolution schemes to feature sieves is shown.
引用
收藏
页码:1547 / 1560
页数:14
相关论文
共 35 条
[1]  
Alvarez Luis, 1994, ACTA NUMER, V3, P1
[2]  
[Anonymous], 1992, 10 LECT WAVELETS
[3]  
BANGHAM JA, 1993, P IEEE WORKSH NONL S
[4]  
BRUEKERS FAML, 1992, IEEE J SEL AREA COMM, V10, P130
[5]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[6]   Nonexpansive pyramid for image coding using a nonlinear filterbank [J].
de Queiroz, RL ;
Florencio, DAF ;
Schafer, RW .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (02) :246-252
[7]  
DEQUEIROZ RL, 1995, P MIDW S CIRC SYST R
[8]   HIGH COMPRESSION IMAGE-CODING USING AN ADAPTIVE MORPHOLOGICAL SUBBAND DECOMPOSITION [J].
EGGER, O ;
LI, W ;
KUNT, M .
PROCEEDINGS OF THE IEEE, 1995, 83 (02) :272-287
[9]  
Fliess M., 1985, Proceedings of the Twenty-third Annual Allerton Conference on Communication, Control, and Computing, P123
[10]  
FLORENCIO DAF, 1996, P ICASSP, V3, P1815