Finite element implementation of incompressible, transversely isotropic hyperelasticity

被引:624
作者
Weiss, JA
Maker, BN
Govindjee, S
机构
[1] UNIV UTAH, ORTHOPED BIOMECH INST, SALT LAKE CITY, UT 84107 USA
[2] LIVERMORE SOFTWARE TECHNOL CORP, LIVERMORE, CA 94550 USA
[3] UNIV CALIF BERKELEY, DEPT CIVIL ENGN, BERKELEY, CA 94720 USA
关键词
D O I
10.1016/0045-7825(96)01035-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes a three-dimensional constitutive model for biological soft tissues and its finite element implementation for fully incompressible material behavior. The necessary continuum mechanics background is presented, along with derivations of the stress and elasticity tensors for a transversely isotropic, hyperelastic material. A particular form of the strain energy for biological soft tissues is motivated and a finite element implementation of this model based on a three-field variational principle (deformation, pressure and dilation) is discussed. Numerical examples are presented that demonstrate the utility and effectiveness of this approach for incompressible, transversely isotropic materials.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 34 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]  
Bathe K, 2000, FINITE ELEMENT METHO
[3]  
CHOUNG CJ, 1986, FRONTIERS BIOMECHANI, P117
[4]   THERMODYNAMIC RELATIONS FOR HIGH ELASTIC MATERIALS [J].
FLORY, PJ .
TRANSACTIONS OF THE FARADAY SOCIETY, 1961, 57 (05) :829-&
[5]  
Fung Y. C., 1965, Foundations of solid mechanics
[6]  
Fung YC., 1981, BIOMECHANICS
[7]   ELASTICITY OF SOFT TISSUES IN SIMPLE ELONGATION [J].
FUNG, YCB .
AMERICAN JOURNAL OF PHYSIOLOGY, 1967, 213 (06) :1532-+
[8]   MULLINS EFFECT AND THE STRAIN AMPLITUDE DEPENDENCE OF THE STORAGE MODULUS [J].
GOVINDJEE, S ;
SIMO, JC .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1992, 29 (14-15) :1737-1751
[9]  
Green AE., 1970, Large Elastic Deformations, V2
[10]   PASSIVE MATERIAL PROPERTIES OF INTACT VENTRICULAR MYOCARDIUM DETERMINED FROM A CYLINDRICAL MODEL [J].
GUCCIONE, JM ;
MCCULLOCH, AD ;
WALDMAN, LK .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1991, 113 (01) :42-55