Femtosecond Ligand/Core Dynamics of Microwave-Assisted Synthesized Silicon Quantum Dots in Aqueous Solution

被引:86
作者
Atkins, Tonya M. [1 ]
Thibert, Arthur [1 ]
Larsen, Delmar S. [1 ]
Dey, Sanchita [2 ]
Browning, Nigel D. [2 ]
Kauzlarich, Susan M. [1 ]
机构
[1] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
CHEMICAL FUNCTIONALIZATION; NANOPARTICLES; NANOCRYSTALS; PHOTOLUMINESCENT; TEMPERATURE; ROUTE; SPECTROSCOPY; SURFACES; ALKYL; SIZE;
D O I
10.1021/ja207344u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A microwave-assisted reaction has been developed to produce hydrogen-terminated silicon quantum dots (QDs). The Si QDs were passivated for water solubility via two different methods: hydrosilylation produced 3-aminopropenyl-terminated Si QDs, and a modified Stober process produced silica-encapsulated Si QDs. Both methods produce water-soluble QDs with maximum emission at 414 nm, and after purification, the QDs exhibit intrinsic fluorescence quantum yield efficiencies of 15 and 23%, respectively. Even though the QDs have different surfaces, they exhibit nearly identical absorption and fluorescence spectra. Femtosecond transient absorption spectroscopy was used for temporal resolution of the photoexcited carrier dynamics between the QDs and ligand. The transient dynamics of the 3-aminopropenyl-terminated Si QDs is interpreted as a formation and decay of a charge-transfer (CT) excited state between the delocalized pi electrons of the carbon linker and the Si core excitons. This CT state is stable for similar to 4 ns before reverting back to a more stable, long-living species. The silica-encapsulated Si QDs show a simpler spectrum without CT dynamics.
引用
收藏
页码:20664 / 20667
页数:4
相关论文
共 33 条
[1]   Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles [J].
Anthony, Rebecca ;
Kortshagen, Uwe .
PHYSICAL REVIEW B, 2009, 80 (11)
[2]   A low-temperature solution phase route for the synthesis of silicon nanoclusters [J].
Bley, RA ;
Kauzlarich, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (49) :12461-12462
[3]   Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces [J].
Boukherroub, R ;
Petit, A ;
Loupy, A ;
Chazalviel, JN ;
Ozanam, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (48) :13459-13462
[4]   ELECTRONIC SPECTROSCOPY AND PHOTOPHYSICS OF SI NANOCRYSTALS - RELATIONSHIP TO BULK C-SI AND POROUS SI [J].
BRUS, LE ;
SZAJOWSKI, PF ;
WILSON, WL ;
HARRIS, TD ;
SCHUPPLER, S ;
CITRIN, PH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (10) :2915-2922
[5]   Organometallic chemistry on silicon and germanium surfaces [J].
Buriak, JM .
CHEMICAL REVIEWS, 2002, 102 (05) :1271-1308
[6]   Electron-phonon coupling and optical transitions for indirect-gap semiconductor nanocrystals [J].
Delerue, C ;
Allan, G ;
Lannoo, M .
PHYSICAL REVIEW B, 2001, 64 (19)
[7]   Dielectric parameters relevant to microwave dielectric heating [J].
Gabriel, C ;
Gabriel, S ;
Grant, EH ;
Halstead, BSJ ;
Mingos, DMP .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (03) :213-223
[8]   Microwave-enhanced reaction rates for nanoparticle synthesis [J].
Gerbec, JA ;
Magana, D ;
Washington, A ;
Strouse, GF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (45) :15791-15800
[9]   Excited-State Relaxation Dynamics of 3-Vinylthiophene-Terminated Silicon Quantum Dots [J].
Groenewegen, Vincent ;
Kuntermann, Volker ;
Haarer, Dietrich ;
Kunz, Michael ;
Kryschi, Carola .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (27) :11693-11698
[10]   Highly luminescent silicon nanocrystals with discrete optical transitions [J].
Holmes, JD ;
Ziegler, KJ ;
Doty, RC ;
Pell, LE ;
Johnston, KP ;
Korgel, BA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3743-3748