Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures

被引:324
作者
Rosenberg, GA [1 ]
Cunningham, LA
Wallace, J
Alexander, S
Estrada, EY
Grossetete, M
Razhagi, A
Miller, K
Gearing, A
机构
[1] Univ New Mexico, Dept Neurol, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Neurosci, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Cell Biol, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Dept Physiol, Albuquerque, NM 87131 USA
[5] British Biotechnol Ltd, Oxford OX4 5LY, England
关键词
astrocyte; blood-brain barrier; cerebral ischemia; matrix metalloproteinase; microglial cell; stromelysin;
D O I
10.1016/S0006-8993(00)03294-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reperfusion damages the blood-brain barrier (BBB). Matrix metalloproteinases (MMPs) are associated with the opening of the BBB, but their cellular localization and activation mechanisms are uncertain. We used immunohistochemistry to determine the cellular localization of the MMPs in reperfused rat brain, and cell cultures to study their activation. Spontaneously hypertensive rats (SHR) had a 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion for times from 3 h to 21 days. Frozen sections were immunostained with antibodies to gelatinase A (MMP-2), stromelysin-1 (MMP-3), and gelatinase B (MMP-9). Sham-operated control rats showed MMP-2 immunostaining in astrocytic processes next to blood vessels. After 3 h of the onset of reperfusion MMP-2 immunostaining increased in astrocytes. At 24 h immunoreactivity for MMP-3 and MMP-3 appeared. MMP-3 co-localized with activated microglia (Ox-42+) and ischemic neurons (NeuN+). MMP-9 immunostaining was seen at 48 h in endothelial cells, neutrophils, and neurons. At 5 and 21 days intense MMP-2 staining was seen in reactive astrocytes around the ischemic core. Studies of activation of the MMP were done in lipopolysaccharide (LPS)-stimulated astrocyte and microglia cultures. Stimulated astrocytes produced an activated form of MMP-2. When microglia were stimulated, they activated MMP-9. Immunostaining showed MMP-3 in cultures of enriched microglial cells. The hydroxymate-type, MMP inhibitor, BB-1101, blocked the activation of MMP-2 and MMP-9 by LPS in mixed glial cultures. We propose that MMP-2 is normally present in astrocytic end feet, and that during ischemia MMP-9 and MMP-3 are produced. MMP-3 in microglia/macrophages may be activating proMMP-9. Our results show that a differential expression of MMPs by astrocytes, microglia, and endothelial cells at the blood vessels is involved in the proteolytic disruption of the BBB. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 23 条
[1]   Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene [J].
Alexander, CM ;
Howard, EW ;
Bissell, MJ ;
Werb, Z .
JOURNAL OF CELL BIOLOGY, 1996, 135 (06) :1669-1677
[2]   Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats [J].
Belayev, L ;
Busto, R ;
Zhao, WZ ;
Ginsberg, MD .
BRAIN RESEARCH, 1996, 739 (1-2) :88-96
[3]   PROTEASE PRODUCTION BY CULTURED MICROGLIA - SUBSTRATE GEL ANALYSIS AND IMMOBILIZED MATRIX DEGRADATION [J].
COLTON, CA ;
KERI, JE ;
CHEN, WT ;
MONSKY, WL .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (03) :297-304
[4]   Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke [J].
del Zoppo, GJ ;
Von Kummer, R ;
Hamann, GF .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1998, 65 (01) :1-9
[5]  
GIULIAN D, 1986, J NEUROSCI, V6, P2163
[6]   Regulation of matrix metalloproteinase expression in astrocytes, microglia and neurons [J].
Gottschall, PE ;
Deb, S .
NEUROIMMUNOMODULATION, 1996, 3 (2-3) :69-75
[7]   MICROVASCULAR BASAL LAMINA ANTIGENS DISAPPEAR DURING CEREBRAL-ISCHEMIA AND REPERFUSION [J].
HAMANN, GF ;
OKADA, Y ;
FITRIDGE, R ;
DELZOPPO, GJ .
STROKE, 1995, 26 (11) :2120-2126
[8]   Matrix metalloproteinases increase very early during experimental focal cerebral ischemia [J].
Heo, JH ;
Lucero, J ;
Abumiya, T ;
Koziol, JA ;
Copeland, BR ;
del Zoppo, GJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1999, 19 (06) :624-633
[9]   THE BIPHASIC OPENING OF THE BLOOD-BRAIN-BARRIER TO PROTEINS FOLLOWING TEMPORARY MIDDLE CEREBRAL-ARTERY OCCLUSION [J].
KUROIWA, T ;
TING, P ;
MARTINEZ, H ;
KLATZO, I .
ACTA NEUROPATHOLOGICA, 1985, 68 (02) :122-129
[10]   REVERSIBLE MIDDLE CEREBRAL-ARTERY OCCLUSION WITHOUT CRANIECTOMY IN RATS [J].
LONGA, EZ ;
WEINSTEIN, PR ;
CARLSON, S ;
CUMMINS, R .
STROKE, 1989, 20 (01) :84-91