Augmented lagrangian homotopy method for the regularization of total variation denoising problems

被引:8
作者
Melara, L. A. [1 ]
Kearsley, A. J.
Tapia, R. A.
机构
[1] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
[2] Natl Inst Stand & Technol, Div Math & Comp Sci, Gaithersburg, MD 20899 USA
[3] Rice Univ, Dept Computat & Appl Math, Houston, TX USA
关键词
constrained optimization; Newton's method; regularization; homotopy method;
D O I
10.1007/s10957-007-9189-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a homotopy procedure which improves the solvability of mathematical programming problems arising from total variational methods for image denoising. The homotopy on the regularization parameter involves solving a sequence of equality-constrained optimization problems where the positive regularization parameter in each optimization problem is initially large and is reduced to zero. Newton's method is used to solve the optimization problems and numerical results are presented.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 2002, CLASSICS APPL MATH
[2]  
AUBERT G, 2000, MATH PROBLEMS IMAGE
[3]   High-order total variation-based image restoration [J].
Chan, T ;
Marquina, A ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :503-516
[4]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[5]   Analysis of regularized total variation penalty methods for denoising [J].
Dobson, D ;
Scherzer, O .
INVERSE PROBLEMS, 1996, 12 (05) :601-617
[6]   Convergence of an iterative method for total variation denoising [J].
Dobson, DC ;
Vogel, CR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1779-1791
[7]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[8]   BV-type regularization methods for convoluted objects with edge, flat and grey scales [J].
Ito, K ;
Kunisch, K .
INVERSE PROBLEMS, 2000, 16 (04) :909-928
[9]  
MAJAVA K, 2001, THESIS U JYVASKYLA J
[10]  
MELERA LA, 2007, UNPUB KANTOROVICH TH