Enthalpies of formation of U-, Th-, Ce-brannerite: implications for plutonium immobilization

被引:52
作者
Helean, KB [1 ]
Navrotsky, A
Lumpkin, GR
Colella, M
Lian, J
Ewing, RC
Ebbinghaus, B
Catalano, JG
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Thermochem Facil, Davis, CA 95616 USA
[2] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia
[3] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[5] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
关键词
D O I
10.1016/S0022-3115(03)00186-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Brannerite, ideally MTi2O6, (M = actinides, lanthanides and Ca) occurs in titanate-based ceramics proposed for the immobilization of plutonium. Standard enthalpies of formation, DeltaH(f)(0) at 298 K, for three brannerite compositions (kJ/ mol): CeTi2O6 (-2948.8 +/- 4.3), U0.97Ti2.03O6 (-2977.9 +/- 3.5) and ThTi2O6 (-3096.5 +/- 4.3) were determined by high temperature oxide melt drop solution calorimetry at 975 K using 3Na(2)O . 4MoO(3) solvent. The enthalpies of formation were also calculated from an oxide phase assemblage (DeltaH(f-ox)(0) at 298 K): MO2 + 2TiO(2) = MTi2O6, Only UTi2O6 is energetically stable with respect to an oxide assemblage: U0.97Ti2.03O6 (DeltaH(f-ox)(0) = -7.7 +/- 2.8 kJ/mol). Both CeTi2O6 and ThTi2O6 are higher in enthalpy with respect to their oxide assemblages with (DeltaH(f-ox)(0) = +29.4 +/- 3.6 kJ/mol) and (DeltaH(f-ox)(0) = +19.4 +/- 1.6 kJ/mol) respectively. Thus, Ce- and Th-brannerite are entropy stabilized and are thermodynamically stable only at high temperature. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 1995, US GEOL SURV B
[2]  
[Anonymous], 1996, GEOL SURV BULL
[3]   IN-SITU CHEMICAL SPECIATION OF URANIUM IN SOILS AND SEDIMENTS BY MICRO-X-RAY ABSORPTION-SPECTROSCOPY [J].
BERTSCH, PM ;
HUNTER, DB ;
SUTTON, SR ;
BAJT, S ;
RIVERS, ML .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (05) :980-984
[4]  
Bloss FD, 1994, CRYSTALLOGRAPHY CRYS, P545
[5]  
Burns PC, 1999, REV MINERAL <D>, V38, P23
[6]  
EBBINGHAUS BB, 1995, P US DEP EN PLUT STA, P253
[7]  
Ewing R. C., 1995, Progress in Nuclear Energy, V29, P63, DOI 10.1016/0149-1970(94)00016-Y
[8]   STRUCTURAL ENVIRONMENTS OF INCOMPATIBLE ELEMENTS IN SILICATE GLASS MELT SYSTEMS .2. UIV, UV, AND UVI [J].
FARGES, F ;
PONADER, CW ;
CALAS, G ;
BROWN, GE .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (12) :4205-4220
[9]  
Finch R, 1999, REV MINERAL <D>, V38, P91
[10]  
FRONDEL C, 1958, US GEOLOGICAL SURVEY, V1064