Minimizing flows for the Monge-Kantorovich problem

被引:106
作者
Angenent, S [1 ]
Haker, S
Tannenbaum, A
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Brigham & Womens Hosp, Dept Radiol, Surg Planning Lab, Boston, MA 02115 USA
[3] Georgia Inst Technol, Dept Elect, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Dept Comp, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
关键词
optimal transport; gradient flows; weak solutions; image registration; medical imaging;
D O I
10.1137/S0036141002410927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we formulate a new minimizing flow for the optimal mass transport (Monge-Kantorovich) problem. We study certain properties of the flow, including weak solutions as well as short- and long-term existence. Optimal transport has found a number of applications, including econometrics, fluid dynamics, cosmology, image processing, automatic control, transportation, statistical physics, shape optimization, expert systems, and meteorology.
引用
收藏
页码:61 / 97
页数:37
相关论文
共 17 条
[1]  
AMBROSIO L, 2000, CIME SERIES SPRINGER
[2]  
Angenent S., 1999, System Theory: Modeling, Analysis, and Control, P275
[3]  
[Anonymous], ELLIPTIC PARTIAL DIF
[4]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[6]  
CULLEN MJP, 1984, J ATMOS SCI, V41, P1477, DOI 10.1175/1520-0469(1984)041<1477:AELTOS>2.0.CO
[7]  
2
[8]  
DACOROGNA B, 1990, ANN I H POINCARE-AN, V7, P1
[9]  
Evans L.C., 1998, GRAD STUD MATH, V19
[10]  
Evans L. C., 1999, Current Developments in Mathematics, P65