Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π-π Stacking

被引:330
作者
Bjoerk, Jonas [1 ,2 ]
Hanke, Felix [1 ,2 ]
Palma, Carlos-Andres [3 ]
Samori, Paolo [3 ]
Cecchini, Marco [3 ]
Persson, Mats [1 ,2 ]
机构
[1] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England
[2] Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England
[3] Univ Strasbourg, Inst Sci & Ingn Supramol, CNRS 7006, F-67000 Strasbourg, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2010年 / 1卷 / 23期
基金
瑞典研究理事会;
关键词
DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; FORCE-FIELD; COMPLEXES; ENERGIES;
D O I
10.1021/jz101360k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of neutral (poly)-aromatic, antiaromatic, and more generally pi-conjugated systems on graphene is studied as a prototypical case of pi-pi stacking. To account for dispersive interactions, we compare the recent van der Waals density functional (vdw-DF) with three semiempirical corrections to density functional theory and two empirical force fields. The adsorption energies of the molecules binding to graphene predicted by the vdw-DF were found to be in excellent agreement with temperature desorption experiments reported in literature, whereas the results of the remaining functionals and force fields only preserved the correct trends. The comparison of the dispersive versus electrostatic contributions to the total binding energies in the aromatic and antiaromatic systems suggests that pi-pi interactions can be regarded as being prevalently dispersive in nature at large separations, whereas close to equilibrium bonding distance, it is a complex interplay between dispersive and electrostatic Coulombic interactions. Moreover our results surprisingly indicate that the magnitude of pi-pi interactions normalized both per number of total atoms and carbon atoms increases significantly with the relative number of hydrogen atoms in the studied systems.
引用
收藏
页码:3407 / 3412
页数:6
相关论文
共 38 条
[1]   MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1. [J].
ALLINGER, NL ;
YUH, YH ;
LII, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) :8551-8566
[2]  
[Anonymous], 2005, J CHEM PHYS
[3]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[4]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   Application of van der Waals density functional to an extended system:: Adsorption of benzene and naphthalene on graphite [J].
Chakarova-Käck, SD ;
Schröder, E ;
Lundqvist, BI ;
Langreth, DC .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[7]   GRAPHITE INTERPLANAR BONDING - ELECTRONIC DELOCALIZATION AND VAN-DER-WAALS INTERACTION [J].
CHARLIER, JC ;
GONZE, X ;
MICHENAUD, JP .
EUROPHYSICS LETTERS, 1994, 28 (06) :403-408
[8]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[9]  
Feng XL, 2009, NAT MATER, V8, P421, DOI [10.1038/NMAT2427, 10.1038/nmat2427]
[10]   Accurate description of van der Waals complexes by density functional theory including empirical corrections [J].
Grimme, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (12) :1463-1473