A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary N-body problem

被引:31
作者
Emel'yanenko, Vacheslav Vasilievitch [1 ]
机构
[1] S Ural Univ, Dept Computat & Celestial Mech, Chelyabinsk 454080, Russia
关键词
symplectic integration; adaptive integrators; N-body simulations;
D O I
10.1007/s10569-007-9077-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Anew algorithm is developed for long-term integrations of the N-body problem. The method uses symplectic integrations of the Hamiltonian equations of motion for each body. This allows one to employ individual adaptive time-steps in computations. The efficiency of this technique is demonstrated by several tests performed for typical problems of Solar System dynamics.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 25 条
[1]  
Aarseth S.J., 2003, Gravitationa lN-body simulations. Tools and algorithms
[2]  
BROUWER D, 1950, ASTRON PAP AM EPHEME, V13, P85
[3]   A hybrid symplectic integrator that permits close encounters between massive bodies [J].
Chambers, JE .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 304 (04) :793-799
[4]   A multiple time step symplectic algorithm for integrating close encounters [J].
Duncan, MJ ;
Levison, HF ;
Lee, MH .
ASTRONOMICAL JOURNAL, 1998, 116 (04) :2067-2077
[5]   An explicit symplectic integrator for cometary orbits [J].
Emel'yanenko, V .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2002, 84 (04) :331-341
[6]   Efficient orbit integration by scaling for Kepler energy consistency [J].
Fukushima, T .
ASTRONOMICAL JOURNAL, 2003, 126 (02) :1097-1111
[7]   SYMPLECTIC INTEGRATORS FOR LONG-TERM INTEGRATIONS IN CELESTIAL MECHANICS [J].
Gladman, Brett ;
Duncan, Martin ;
Candy, Jeff .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (03) :221-240
[8]   Explicit, time reversible, adaptive step size control [J].
Hairer, E ;
Söderlind, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :1838-1851
[9]  
Lee Dae-Yeol, 1997, Journal of Korean Medical Science, V12, P32
[10]  
Mikkola S, 2002, CELEST MECH DYN ASTR, V84, P343, DOI 10.1023/A:1021149313347