Colossal dielectric constant in high entropy oxides

被引:556
作者
Berardan, David [1 ]
Franger, Sylvain [1 ]
Dragoe, Diana [1 ]
Meena, Arun Kumar [1 ]
Dragoe, Nita [1 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, ICMMO UMR CNRS 8182, F-91405 Orsay, France
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2016年 / 10卷 / 04期
关键词
entropy; dielectric constant; oxides; ALLOYS; XPS; HYDROXIDES; LICOO2;
D O I
10.1002/pssr.201600043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Entropic contributions to the stability of solids are very well understood and the mixing entropy has been used for forming various solids, for instance such as inverse spinels, see Nawrotsky et al., J. Inorg. Nucl. Chem. 29, 2701 (1967) [1]. A particular development was related to high entropy alloys by Yeh et al., Adv. Eng. Mater. 6, 299 (2004) [2] and Cantor et al., Mater. Sci. Eng. A 375-377, 213 (2004) [3] (for recent reviews see Zhang et al., Prog. Mater. Sci. 61, 1 (2014) [4] and Tsai et al., Mater. Res. Lett. 2, 107 (2014) [5]) in which the configurational disorder is responsible for forming simple solid solutions and which are thoroughly studied for various applications especially due to their mechanical properties, e.g. Gludovatz et al., Science 345, 1153 (2014) [6] and Lu et al., Sci. Rep. 4, 6200 (2014) [7], but also electrical properties, Kozelj et al., Phys. Rev. Lett. 113, 107001 (2014) [8], hydrogen storage, Kao et al., Int. J. Hydrogen Energy 35, 9046 (2010) [9], magnetic properties, Zhang et al., Sci. Rep. 3, 1455 (2013) [10]. Many unexplored compositions and properties still remain for this class of materials due to their large phase space. In a recent report it has been shown that the configurational disorder can be used for stabilizing simple solid solutions of oxides, which should normally not form solid solutions, see Rost et al., Nature Commun. 6, 8485 (2015) [11] these new materials were called entropy-stabilized oxides. In this pioneering report, it was shown that mixing five equimolar binary oxides yielded, after heating at high temperature and quenching, an unexpected rock salt structure compound with statistical distribution of the cations in a face centered cubic lattice. Following this seminal study, we show here that these high entropy oxides (named HEOx hereafter) can be substituted by aliovalent elements with a charge compensation mechanism. This possibility largely increases the potential development of new materials by widening their (already complex) phase space. As a first example, we report here that at least one HEOx composition exhibits colossal dielectric constants, which could make it very promising for applications as large-k dielectric materials. (C) 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim
引用
收藏
页码:328 / 333
页数:6
相关论文
共 24 条
[1]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J].
Biesinger, Mark C. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2010, 257 (03) :887-898
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[4]   Surface Properties of LiCoO2 Investigated by XPS Analyses and Theoretical Calculations [J].
Daheron, L. ;
Martinez, H. ;
Dedryvere, R. ;
Baraille, I. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (14) :5843-5852
[5]   Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Gonbeau, D ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1056-1061
[6]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[9]   Optical response of high-dielectric-constant perovskite-related oxide [J].
Homes, CC ;
Vogt, T ;
Shapiro, SM ;
Wakimoto, S ;
Ramirez, AP .
SCIENCE, 2001, 293 (5530) :673-676
[10]  
Hu WB, 2013, NAT MATER, V12, P821, DOI [10.1038/nmat3691, 10.1038/NMAT3691]