Generic global rigidity

被引:270
作者
Connelly, R [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1007/s00454-004-1124-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose a finite configuration of labeled points p = (p(1).....p(n)) in E-d stop is given along with certain pairs of those points determined by a graph G such that the coordinates of the points of p are generic, i.e., algebraically independent over the integers. If another corresponding configuration q = (q(1).....q(n)) in E-d stop is given such that the corresponding edges of G for p and q have the same length, we provide a sufficient condition to ensure that p and q are congruent in E-d stop. This condition, together with recent results of Jackson and Jordan [JJ], give necessary and sufficient conditions for a graph being generically globally rigid in the plane.
引用
收藏
页码:549 / 563
页数:15
相关论文
共 20 条
[1]   RIGIDITY OF GRAPHS .2. [J].
ASIMOW, L ;
ROTH, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) :171-190
[2]   RIGIDITY OF GRAPHS [J].
ASIMOW, L ;
ROTH, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :279-289
[3]  
BENEDETTI, 1990, ACTUALITES MATH
[4]   A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid [J].
Berg, AR ;
Jordán, T .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) :77-97
[5]   Second-order rigidity and prestress stability for tensegrity frameworks [J].
Connelly, R ;
Whiteley, W .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (03) :453-491
[6]   RIGIDITY AND ENERGY [J].
CONNELLY, R .
INVENTIONES MATHEMATICAE, 1982, 66 (01) :11-33
[7]  
CONNELLY R, 1991, APPL GEOMETRY DISCRE, P147
[8]  
Connelly R., 1993, Handbook of Convex Geometry, P223
[9]  
Gluck H., 1975, LECT NOTES MATH, P225, DOI DOI 10.1007/BFB0066118
[10]  
GRAVER J, 1993, COMBINATORIAL RIGIDI, V2, P52034