The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes

被引:104
作者
Markovic, Zoran
Todorovic-Markovic, Biljana
Kleut, Duska
Nikolic, Nadezda
Vranjes-Djuric, Sanja
Misirkic, Maja
Vucicevic, Ljubica
Janjetovic, Kristina
Isakovic, Aleksandra
Harhaji, Ljubica
Babic-Stojic, Branka
Dramicanin, Miroslav
Trajkovic, Vladimir
机构
[1] Univ Belgrade, Sch Med, Inst Microbiol & Immunol, YU-11000 Belgrade, Serbia
[2] Vinca Inst Nucl Sci, Belgrade, Serbia
[3] Inst Biol Res, Belgrade, Serbia
[4] Univ Belgrade, Sch Med, Inst Biochem, Belgrade, Serbia
关键词
carbon; nanoparticle; cytotoxicity; free radical; modelling;
D O I
10.1016/j.biomaterials.2007.09.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Because of the ability to induce cell death in certain conditions, the fullerenes (C-60) are potential anticancer and toxic agents. The colloidal suspension of crystalline C-60 (nano-C-60, nC(60)) is extremely toxic, but the mechanisms of its cytotoxicity are not completely understood. By combining experimental analysis and mathematical modelling, we investigate the requirements for the reactive oxygen species (ROS)-mediated cytotoxicity of different nC(60) suspensions, prepared by solvent exchange method in tetrahydrofuran (THF/nC(60)) and ethanol (EtOH/nC(60)), or by extended mixing in water (aqu/nC(60)). With regard to their capacity to generate ROS and cause mitochondrial depolarization followed by necrotic cell death, the nC(60) suspensions are ranked in the following order: THF/nC(60) > EtOH/nC(60)>aqu/nC(60). Mathematical modelling of singlet oxygen (O-1(2)) generation indicates that the O-1(2)-quenching power (THF/nC(60) < EtOH/nC(60) < aqU/nC(60)) of the solvent intercalated in the fullerene crystals determines their ability to produce ROS and cause cell damage. These data could. have important implications for toxicology and biomedical application of colloidal fullerenes. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5437 / 5448
页数:12
相关论文
共 45 条
[1]   Is the C60 fullerene molecule toxic?! [J].
Andrievsky, G ;
Klochkov, V ;
Derevyanchenko, L .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2005, 13 (04) :363-376
[2]   PHOTOPHYSICAL PROPERTIES OF C60 [J].
ARBOGAST, JW ;
DARMANYAN, AP ;
FOOTE, CS ;
RUBIN, Y ;
DIEDERICH, FN ;
ALVAREZ, MM ;
ANZ, SJ ;
WHETTEN, RL .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (01) :11-12
[3]   Kinetics of fullerene triplet states [J].
Ausman, KD ;
Weisman, RB .
RESEARCH ON CHEMICAL INTERMEDIATES, 1997, 23 (05) :431-451
[4]   THE SOLUBILITY OF OXYGEN AND OZONE IN LIQUIDS [J].
BATTINO, R ;
RETTICH, TR ;
TOMINAGA, T .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1983, 12 (02) :163-178
[5]   A mathematical model of the photodynamic fullerene-oxygen action on biological tissues [J].
Belousova, IM ;
Mironova, NG ;
Yur'ev, MS .
OPTICS AND SPECTROSCOPY, 2005, 98 (03) :349-356
[6]   Reactions of e-aq, CO2•-, HO•, O2•- and O2(1Δg) with a dendro[60]fullerene and C60[C(COOH)2]n (n=2-6) [J].
Bensasson, RV ;
Brettreich, M ;
Frederiksen, J ;
Göttinger, H ;
Hirsch, A ;
Land, EJ ;
Leach, S ;
McGarvey, DJ ;
Schonberger, H .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 29 (01) :26-33
[7]   Fullerene derivatives: an attractive tool for biological applications [J].
Bosi, S ;
Da Ros, T ;
Spalluto, G ;
Prato, M .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2003, 38 (11-12) :913-923
[8]  
Briviba K, 1997, BIOL CHEM, V378, P1259
[9]   Naphthalene adsorption and desorption from Aqueous C60 fullerene [J].
Cheng, XK ;
Kan, AT ;
Tomson, MB .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (03) :675-683
[10]   New noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen [J].
Costa, David ;
Fernandes, Eduarda ;
Santos, Joao L. M. ;
Pinto, Diana C. G. A. ;
Silva, Artur M. S. ;
Lima, Jose L. F. C. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 387 (06) :2071-2081