Synthetic biology combines knowledge from various disciplines including molecular biology, engineering, mathematics and physics to design and build novel proteins, genetic circuits and metabolic networks. Early efforts aimed at altering the behavior of individual elements have now evolved to focus on the construction of complex networks in single-cell and multicellular systems. Recent achievements include the development of sophisticated non-native behaviors such as bistability, oscillations, proteins customized for biosensing, optimized drug synthesis and programmed spatial pattern formation. The de novo construction of such systems offers valuable quantitative insight into naturally occurring information processing activities. Furthermore, as the techniques for system design, synthesis and optimization mature, we will witness a rapid growth in the capabilities of synthetic systems with a wide-range of applications.